

Deliverable of Erasmus+ project

Boosting the role of HEIs in the industrial transformation towards the Industry 4.0 paradigm in Georgia and Ukraine / HEIn4 609939-EPP-1-2019-1-BE-EPPKA2-CBHE-JP

Produced under Activity 2.2.1

HEI: Ukrainian state university of science and technologies (National Metallurgical Academy of Ukraine until 01.11.2021)

SYLLABUS

"Integration of Industry 4.0 to Manufacturing Operations"

European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein

Name of	Integration of Industry 4.0 to Manufacturing Operations	
discipline		
Code and	131 - Applied Mechanics	
specialty name		
Name of	Manufacturing Technology	
educational		
program		
Higher	Second (master's)	
education level		
Status of	Selective discipline of the training cycle (professional) training	
discipline		
Scope of the	4 ECTS (120 academic hours)	
discipline in		
ECTS		
Term of the	2nd semester (III quarter)	
discipline		
Name of the	Manufacturing Technology Department	
department		
teaching the		
discipline		
Leading	Associate Professor, Ph.D. Abramov Serhii	
teacher		
(lecturer)		
Language of	Ukrainian	
instruction		
Prerequisites	The study should be preceded by the learning of disciplines:	
for study	- Theory of automated control;	
	- Special and electrophysical methods of surface treatment;	
	- Special machines and mechatronic systems in mechanical engineering;	
	- Information-measuring and control systems in mechanical engineering	
Purpose	Acquisition of knowledge and skills required for:	
	- experimental research;	
	- technology design integrated with modern methods and equipment, robot	
	hardware and systems;	
	 process design for engineering industries; 	
	- the ability to formulate and solve of practical problems in the field of	
	development of integrated technologies through engineering research,	
	design and implementation in production.	

Competences	Students shall be able to:	
provided	- Identify and solve complex problems in mechanical engineering	
	technology, which involves the use of acquired professional knowledge,	
	skills and abilities;	
	- introduce innovative forms of work and research in the field of mechanical	
	engineering technology;	
	- make informed decisions;	
	- apply information & communication technologies;	
	- develop and manage manufacturing projects;	
	- apply appropriate mathematical, scientific and technical methods,	
	information technology and applied computer software to solve	
	engineering and scientific problems in applied mechanics;	
	- describe, classify and model a wide range of technical objects and	
	processes, based on deep knowledge and understanding of mechanical	
	theories and practices, as well as basic knowledge of related sciences;	
	- work independently and function effectively as a group leader or structural	
	unit in the performance of production tasks, complex projects, research;	
	- take responsibility for the development of professional knowledge and	
	practices in a team;	
	- use the features and benefits of special, electrophysical and	
	mechanochemical methods of processing in professional activities.	

Learning	As a result of study the students must	
outcomes	know:	
	 ✓ basic terms and concepts of integrated technologies; 	
	✓ materials used in additive technologies;	
	\checkmark physical bases of layer-by-layer production of materials by additive	
	technologies;	
	 the process of forming the surface layer in 3D printing; 	
	be able to:	
	✓ apply modern experimental methods to assess quality of materials in lab	
	and in industrial conditions; use knowledge and skills for operating,	
	maintenance and production control;	
	• argue the choice of methods for solving specific problems, critically evaluate the results obtained and defend the decisions made:	
	\checkmark apply professional knowledge and skills to solve typical industrial	
	problems in practical situations;	
	\checkmark analyze and compare the parameters of different measuring instruments	
	and according to the requirements of the technological process	
	The discipline ensures the achievement of the following learning outcomes:	
	\checkmark Knowledge of the principles of design and operation of automation	
	systems;	
	✓ Ability to use the means of methodology, methods and techniques for	
	developing new type of product, in particular through R&D	
	• Ability to perform computer based static and dynamic analysis of	
	Knowledge of the structure operation hardware and software of	
	computerized measurement systems in manufacturing in particular during	
	the finishing operations	
Course content	Module 1 Design of technological processes of integrated technologies in the	
	conditions of sustainable production and Industry 4.0	
	Module 2 Functional organization of equipment of the "Manufacturing Factory"	
	Learning Lab"	
	Module 3 Practical aspects of creating schemes of experimental robotic	
	technological complexes within the framework of Industry 4.0, based on the	
	"Manufacturing Factory Learning Lab" for the specific machine parts	
	Module 4 Technological and dimensional aspects in machinery manufacturing	
	related to the process of creating integrated technology in the context of Industry	
	4.0	
Measurement	Assessment of the Modules 1-4 is based on the results of test which includes	
	questionnaire and assignments.	
	Each module is graded on a 12-point scale. The final grade of the discipline is defined as the arithmetic mean of 4 modules.	
	grades on a 12-point scale	

Workload

	Total
Total hours according to the curriculum	

including:	
Classroom	
of which:	
- lectures	10
- laboratory work	
- practical classes	
- seminars	
Independent work	
including:	
- preparation for classroom classes	
- preparation for modular control activities	
- implementation of course projects (works)	
- implementation of individual tasks	
- elaboration of sections of the program that are not taught in	
lectures	12
Semester control	

Specific learning	process involves the use of a multimedia system, application software:
tools/equipment	Power INSPECT. Modern computer-aided design packages:
	AutoCAD, CAD / CAM systems: T-FLEX, Compass, SolidWorks,
	Siemens NX, Delcam, Mastercam and modern programming
	languages. Laboratory equipment: 3D printers, 3D scanner, CNC
	machine, laser engraver.

Recommended	Ukrainian
literature	1. Integrated processes of material processing by cutting: a
	textbook for higher education/ A.I Grabchenko, V.A Zaloga,
	Yu.N. Vnukov; ed. A.I. Grabchenko and V.A Zaloga. Sumy:
	University Book, 2017. 451 p.
	2. Workflows of high technologies in mechanical engineering:
	Textbook / A.I Grabchenko, M.V Verezub, Y.M. Vnukov, P.P.
	Melnichuk, G.M. Vygovsky/ ed. A.I. Grabchenko. Zhytomyr:
	ZhSTU, 2018. 507 p.
	3. Integrated generative technologies: textbook. / A.I.
	Grabchenko, Y.N. Vnukov, V.L. Dobroskok, L.I. Pupan, V.A.
	Fadeev: ed. A.I. Grabchenko Kharkiv: NTU "KhPI", 2019
	416 p.
	4. Working processes of high technologies in mechanical
	engineering: Textbook / Grabchenko A.I. Verezub M.V.
	Vnukov Y.M, Melnichuk P.P, Vygovsky GM / Ed. A.I.
	Grabchenko Zhytomyr: ZhDTU, 2013 451 p.
	5. Integrated technologies of accelerated prototyping and
	manufacturing/ Tovazhnvansky L.L. Grabchenko A.I.
	Chernyshov S.I. Verezub N.V. Vitvazev Y.B. Dobroskok V.L.
	Knut H., Lierat F. / Ed. Tovazhnvansky L.L. Grabchenko A.I -
	Kharkiv: OAO Model Universe, 2015 224 p.
	6. Introduction to nanotechnology: the lectures for engineering
	students / A.I Grabchenko, L.I Pupan, L.L. Tovazhnvansky,
	Kharkiv: NTU "KhPI", 2012. 272 p.
	7. Grabchenko A.I. Dobroskok V.L. Fedorovich V.A 3D
	modeling of diamond-abrasive tools and grinding processes:
	Textbook Kharkiv: NTU "KhPI", 2006 364 p.
	English
	8. H. Abdel-Aal, Additive Manufacturing of Metals:
	Fundamentals and Testing of 3D and 4D Printing, McGraw
	Hill, 2021, 496 p.
	9. New Industry 4.0 Advances in Industrial IoT and Visual
	Computing for Manufacturing Processes, L. N. L. de Lacalle,
	J. Posada, MDPI, 2020, 428 p.
	10. D. Galar, P. Daponte, U.Kumar, Handbook of Industry 4.0 and
	SMART Systems, CRC Press, 2019, 386 p.

Approved at the meeting of the quality assurance group of the educational program " Manufacturing Technology " (Protocol № 10f 15.09.2021).

Revised at the meeting of the quality assurance group of the educational program "Manufacturing Technology " (Protocol № 1 of 13.09.2023).

Guarantor of the educational program, PhD Serhii Bondarenko