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INTRODUCTION

Linear algebra is the branch of mathematics concerned with the study of
systems of linear equations, vectors, vector (or linear) spaces and linear maps
(or linear transformations). It is an old subject and originally its development
dealt with transformation of geometric objects and solution of systems of linear
equations. The history of modern linear algebra began in nineteenth century,
when W. Hamilton (he is also the author of the term vector) in 1843 discovered
the quaternions, J. Sylvester in 1848 introduced the term matrix, and A. Cayley
in 1857 developed the matrix theory, one of the most fundamental linear algeb-
raic ideas. In recent years linear algebra has begun to rival calculus as a most
commonly used subject in mathematics. It is widely used in different branches
of mathematics, in particular, abstract algebra and functional analysis, and also
has a concrete representation in analytical geometry and it is generalized in ope-
rator theory. Theory and methods of modern linear algebra has also extensive
applications to mechanics and engineering, computer science and coding theory,
biology and medicine, economics and statistics, and, increasingly, to manage-
ment and social sciences. The general method of finding a linear approach to the
problem, expressing in the terms of linear algebra, and solving it, is one of the
most widely used, because nonlinear models can often be approximated by a li-
near one, and the leaving from nonlinear problems is very important for practice.

This textbook is a basic introduction to the principal ideas and techniques of
linear algebra and is intended for students of technical specialization. The first
part of this text is dedicated to matrices, determinants and solving of linear sys-
tems. In spite of the fact that historically the early emphasis was on the determi-
nant, not the matrix, in modern treatments of linear algebra matrices are conside-
red first. We acted in the same way. The second part is an introduction to vec-
tors and include the basic concepts of vector algebra and its some applications to

problems of geometry and physics.
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Section 1
MATRICES, DETERMINANTS AND SYSTEMS OF
LINEAR ALGEBRAIC EQUATIONS

1. Matrices

Historical reference. The study of matrices is quite old. Latin squares and magic squares
have been studied since prehistoric times.

Matrices have a long history of application in solving linear equations. An important
Chinese text from between 300 BC and AD 200, Nine Chapters of the Mathematical Art
(Chiu Chang Suan Shu), is the first example of the use of matrix methods to solve
simultaneous equations. The term “matrix” was first coined in 1848 by J.J. Sylvester. Cayley,
Hamilton, Grasmann, Frobenius and von Neumann are among the famous mathematicians

who have worked on matrix theory.

1.1. Fundamental concepts

A matrix A is a rectangular table of real or complex numbers or, more
generally, a table consisting of abstract quantities (for example, vectors,
functions) that can be added and multiplied. The horizontal lines in a matrix are
called rows and the vertical lines are called columns. A matrix with m rows and
n columns is called an m-by-n matrix (written m x n) or a matrix of size m x n .
Numbers n and m are called dimensions of matrix A. They are always given
with the number of rows first, then the number of columns.

A matrix is usually written in the form

apn  ap ayy
a21 azz coe az

A= " (1.1)
a1 Ay Ayn



The entry of a matrix A that lies in the i-th row and j-th column is called the

i, j entry or (i, j)-th entry of 4. This is written as a;;. The convention is that the

first index denotes the row and the second index denotes the column. Therefore

matrix 4 is often written simply in the form (a,-j). Entries a;; are usually called

the elements or components of matrix 4. The elements a;,,a;,,...,a;, are the
elements of the i-th row of A, and the elements a,;,a,;,...,4a,,; are the

elements of the j-th column.
A matrix where one of the dimensions equals one is often called a vector. A
row vector or row matrix is a 1xn matrix (one row and n columns)

(a11 Ay o “1n) while a column vector or column matrix is an mx1

an

. a3
matrix (m rows and one column)

aAm

A matrix of size nx n is said square matrix of n-th order. In a square matrix
A, the elements a; (i=1,2,...,n) are named its principal diagonal elements
and form a principal diagonal. The elements a; ,_ ;.4 (i=1, 2, ,n) are
named a secondary diagonal elements and form a secondary diagonal of
matrix A.

A matrix, all elements of which are equal to zero, is called the zero matrix

and is denoted by the symbol 0.

A matrix
(a;;, 0 0 0 0 0 )
0 ay,, 0
: (1.2)
@y 1n 0
L0 0 0 0 0 a,, )



which has all of its elements zero except the diagonal ones, i.e. a; =0 for all

i # j,is called the diagonal matrix.
In a special case a; =1 (i=1,2,...,n) the diagonal matrix is called the

identity matrix of order n x nand denoted by

(1 0 0 ... 0 0 O
0O 1 0 ... 0 0 O
) S U 1.3)
0 0 0 ... 0 1 0
0 0 0 ... 0 0 1)

A square matrix 4 whose elements satisfy a; = 0 for all i> j, is called an

upper triangular matrix, 1.¢.,

ayg ap A1n
0
A= ar Az (1.5)
0 0 a

A lower triangular matrix can be defined in a similar fashion, i.e. a; = 0 for
all i < j. A diagonal matrix (1.2) is both an upper triangular matrix and a lower

triangular matrix.
1.2. Matrix arithmetic

Equality of matrices. Two matrices A and B are said to be equal if they

have the same size and corresponding elements are equal. That is, 4= (aij)
(i=1,2,...,m;j=1,2,...,m)and B=(b;) (i=1,2,...,m; j=1,2,...,n)

and a; =b; fori=1,2,...,m, j=1,2,..., n



Addition of matrices. If A= (aij) and B= (blj) are two m x n matrices,

their sum A + B is an m x n matrix obtained by adding corresponding elements

of Aand B. Thus A +B = (a; )+ (b;) = (a;; +b;) for i=1,2,...,m,

j=1,2,...,n
Subtraction of matrices. Matrix subtraction is defined for two matrices

A= (aij) and B= (blj) of the same size, in the usual way. That is

A-B =(aij) - (bij)z(aij_bij) (i=1,2,...,m;j=1,2,...,n).

Remark. Two matrices of the same order are said to be conformable for addition and

subtraction. Addition and subtraction are not defined for matrices which are not conformable.

Scalar multiplication of a matrix. If A= (aij) isan m x n matrix and A is

a number (scalar), then AA4 is a matrix obtained by multiplying all elements of

A by A;thatis M=l(aij)=(laij) (i=1,2,...,m;j=1,2,...,n).

Therefore, — A= (— l)A = (— a,-j) .

-3 4 2 5
Example 1.1. A= , B= .
-1 2 1 -2

-9 12 4 10 -9+4 12+10 -5 22
3A+2B= + = = .
-3 6 2 -4 -3+2 6-4 -1 2

The matrix operations of addition, subtraction and scalar multiplication

satisfy the usual laws of arithmetic (in what follows, A and u will be arbitrary
scalars and 4, B, C are matrices as assumed to be conformable).
1. A + B=B+A.
2. (A+B)+C =A+(B+C).
3. 0+4 = A. (1.6)
4. A+ (-A)=0.
5. A(A£tB)=AAtAB.



(Atu)A= A4 u A.
A(pA)=(Au)A.

14=A4, 04=0.

AA =0 = A=0o0r A=0.

© ® 2@

Matrix product. Let A= (aij) be a matrix of size mxn and B = (b jk) be a
matrix of size nx p. Then product AB of matrices A and B is the m x p matrix

C =(c;; ) whose (i, k )-th element is defined by the formula

n
Cik = ailblk + ai2b2k + . + ainbnk = Zaljbjk ) (1.7)
Jj=1
where i=1,2,...,m, k=1,2, ..., p.
Remark. The product AB is defined only when the number of columns of A4 is equal to the
number of rows of B. If this is the case, A is said to be conformable to B for multiplication.

If 4 1s conformable to B, then B is not necessarily conformable to A.

S -1 3 1 4
Example 1.2. A=|2 -2 1 |, B=|-2 -4|,
1 3 -3 3 -1

5x1+(—1)x(=2)+3x3 5x4+(-)x(—4)+3x(-1)) (16 21
AB= | 2x1+(=2)x(=2) +1x3 2x4+(=2)x(-d)+1x(-1)|=| 9 15 |.
I1x1+3%x(=2)+(-3)x3 1x4+3x(-4)+(-3)x(-1)) |-14 -5

Matrix multiplication obeys associative and distributive laws:

1. (AB) C=A4A (BC) if A, B, C are mxn, nx p, pXq matrices
respectively.

2. A(AB)=(AA)B=A(AB).

3. (A+B) C=AC + BC if A and B are matrices of size mxn and C is
n x p matrix (“right distributivity”).

-10 -



4. A(B+ C)=AB + AC if B and C are matrices of size mxn and A4 is

pxm matrix (“left distributivity™).

5. AE =EA=A if Aisany nxn matrix, that is, E is the multiplicative

identity for the set of nx n matrices.

6. In general, AB # BA, i.e. even if BA is defined, it is not necessarily equal

to AB. Therefore in general, AB = 0 does not imply 4 = 0 or B = 0, and

AB = AC does not necessarily imply B =C .

1.3. Transpose matrix

Let A is the matrix (1.1) of size m xn. Then the matrix of size nxm

obtained by interchanging the rows and columns matrix 4 is called the

transpose of A and is denoted by A”.

Thatis af = a

ij = 4ji OF
T
ap;;  ap Ay an
qT = | 22 an | _ | %2
A1 Ay An ai,

It is easily shown that
W)= 4,

(A4) = 247,

(4+B) = 4"+ BT,

(4B ) = BTA".

-11 -

ml

“m2 | 18)

mn

(1.9)



2. Determinants

Historical reference. Historically, determinants were considered before matrices. In the
seventh chapter of above-mentioned Chinese text (see hist. ref. to 1), “Too much and not
enough”, the concept of a determinant first appears, almost 2000 years before its invention by
the Japanese mathematician Seki Kowa in 1683.

Originally, a determinant was defined as a property of a system of linear equations. The
determinant “determines” whether the system has a unique solution (which occurs precisely if
the determinant is non-zero). In this sense, two-by-two determinants were considered by
Cardano at the end of 16™ century. German Gottfried Leibniz (who is also credited with the
invention of differential calculus, separately from but simultaneously with Isaac Newton)
developed the theory of determinants in 1693. Following him Cramer developed the theory
further, treating the subject in relation to sets of equations, and presented Cramer’s rule in
1750. The recurrent law was first announced by Bezout in 1764.

It was Vandermonde (1771) who first recognized determinants as independent functions.
Laplace (1772) gave the general method of expanding a determinant in terms of its
complementary minors: Vandermonde had already given a special case. Immediately
following, Lagrange (1773) treated determinants of the second and third order. Lagrange was
the first to apply determinants to questions outside elimination theory; he proved many
special cases of general identities.

Carl Friedrich Gauss and Wilhelm Jordan developed Gauss-Jordan elimination in the
1800s. Gauss (1801) made the next advance. Like Lagrange, he made much use of
determinants in the theory of numbers. He introduced the word determinants (Laplace had
used resultant), though not in the present signification, but rather as applied to the
discriminant of a quantic. Gauss also arrived at the notion of reciprocal (inverse)
determinants, and came very near the multiplication theorem.

The next contributor of importance is Binet (1811, 1812), who formally stated the theorem
relating to the product of two matrices of m columns and n rows, which for the special case of
m = n reduces to the multiplication theorem. On the same day (Nov. 30, 1812) that Binet
presented his paper to the Academy, Cauchy also presented one on the subject. In this he used
the word determinant in its present sense, summarized and simplified what was then known
on the subject, improved the notation, and gave the multiplication theorem with a proof more

satisfactory than Binet’s. With him begins the theory in its generality.

-12-



1.4. Basic definitions

Every square matrix A of size mxn can be associated with a unique
function depending on elements of 4 and possessing some specific properties.
This function is called the determinant of a matrix A.

The common definition of determinant (the so-called Leibniz formula) is
sufficiently complicated and here is not given. In addition in overwhelming
majority of cases this definition is useless for practical computations. Therefore
we shall be restricted to definitions of a determinant for partial cases of matrixes
2x2 and 3x3, and as definition of a determinant in a common case of a matrix
nx n we shall conditionally accept one of ways of its computation (so-called
Laplace expansion).

The determinant of matrix A4 denoted by det 4 or ‘A ‘ Second notation is
also used to denote the absolute value. However, the absolute value of a matrix
is, in general, not defined. Thus, the notation for determinant by vertical bars on
both sides of the matrix is frequently used.

Determinant of the second order. 1f A is a 2x2 matrix, that is expression

ay145, — 1,0, 1s called the determinant of 2x2 matrix or determinant of the

second order, so

= agay — apa; - (1.10)

ay; 4ax

Example 1.3. Find a determinant = 3- (— 5) -4. (— 2) = -1.

-2

-
Determinant of the third order. If A is a 3x3 matrix, that is expression

A1d22033 T Q13033031 T Q13051d3; — Q1183303 — Q12851433 —

— ay3a5,a3; 1s called the determinant of 3x3 matrix or determinant of the

third order, so

- 13-



a4 4z 443
det A =|ay; ayp Gy |= ayayass + 0303 + A13a503 — Ay dy3ds) —

a3 dz 4s3
T 1221433 — @13d343 - (1.11)
Minor. Let A =(a,~j) be a nx n matrix. The minor M;; corresponding to
the element a; (or simply minor of a;) is the determinant of the
(n—1)x(n—1) submatrix of A4 formed by deleting the i-th row and j-th
column of A4 containing the element a;;.
Cofactor. The cofactor corresponding to the element a; (or simply

cofactor of a;;) is
A= DMy (1.12)

Remark. The expression (— 1)i+j obeys the chess-board pattern of signs:

Determinant of n-th order. Let A= (aij) be a matrix of size nx n

(n>2). The determinant of A (or determinant of n-th order) is the sum of
the entries in any row or any column multiplied by their respective cofactors.

Applying this definition to find a determinant is called expanding by
cofactors.

Expanding by the i-th row called i-th row Laplace expansion

n
det A = ailAil + aizAiz + ...t ainAin = ZaUAlJ (1.13)
j=1

and expanding by the j-th column called j-th column Laplace expansion

- 14 -



n
det A= a;;41; + arjAy; + oot ay;Ad,; = ZaiinJ" (1.14)
i=1

Remark. From last definitions follows, as it is easy to see, that the finding of a determinant

of n-th order is reduced to a finding of »n determinants of (n-1)-th order. Therefore Laplace

expansion is efficient for computation of determinants of relatively small matrices. In general,

determinants can be computed using Gaussian elimination. Laplace expansion is of theoretical

interest as one of several ways to view the determinant, as well as of practical use in
determinant computation.

If A 1is a 3x3 matrix, then, using the first- row Laplace expansion, we
receive the definition of determinant of a third order in the form of
ayp a4y ag3
det A=l|ay; ay ay|= a4y - apdp+ apd; =

asz; 4az; 4ass

_ @y dy; a1 dp; ay dy| _
= day —dap t a3 =

a3 das3 a3 ds; az as
= A3z T Apdyzds; T a13d103; — 4118303, ~
— dppdp1d33 — Gy3dyd3;. (1.15)
Note. A convenient methods for calculating determinants of the third order are mnemonic
Sarrus rules. First rule is known as a triangles rule. Schemes of these rules are illustrated by
Fig. 1.1 and Fig. 1.2. The conditional lines connecting elements of determinants designate
corresponding products. The products of the elements connecting by dotted lines on Fig. 1.2

2

we take with the sign “ —

Example 1.4. Find a determinant with use of a triangles rule

2 4 -1
-3 5 4|=25(-3)+4-4-1+(-1)-(-3)-0-(-1)-5-1-
1 0 -3

—4-(-3)-(-3)-2-4-0= - 45.

Remark. For reduction of calculations it is best to choose a row or column with the

greatest quantity of zeros, so we use second-column Laplace expansion:

-15 -



2 4 -1
-3 4 2 -1
-3 5 4|= —-4. +5- =
1 -3 1 -3
1 0 -3

=—4-(9-4)+5-(-6+1)=—20—-25= —45.

As we see, the received result has coincided with previous.

The first Sarrus rule (triangles rule)

app 41y a3
Ay ap 4

asz; 4az; 4ass

a a a a
a;, a, 13 1 12 13
—
a a
ay, 253 21 23
a a a
Fig. 1.1

The second Sarrus rule

=

a3
a5, a4y ag \ \ \

ay; a4z Aap;

az; az ass \\ \\ \
a3, 33

Fig. 1.2

- 16 -



1.5. Properties of determinants

Property 1. A matrix and its transpose have equal determinants; that is

det 4 = det (A"). (1.16)
Remark. As it follows from this property the rows and the columns of a determinant are
equal in rights. Therefore all properties which further we shall formulate with respect to rows,

are correct and for columns.

Property 2. If any two rows of the determinant are interchanged, the
determinant changes the sign.

Property 3. Let B is the matrix received from the matrix 4 by multiplying

one row with the number A, then

det B= A det A. (1.17)
For example
ay 4 ... 44 Ain a;p A a,;j A1n
as as coe azj cee azn asq (15%) coe azj coe azn
= A
/ltlil Aaiz coe Aal] cee /ltlin ail aiz coe aij coe ain
a1 a,» cee anj e Ay, a,, a,, ... anj oo A,y

Property 4. The determinant is a linear function of each row.

For example

agq a, oo alj a,
asq as oo azj coe as,
bil +Ci1 biZ +Ci2 oo bt] +Cl] bin +Cin
a1 a,» oo anj oo a,,

-17 -



aq a, cee alj cee aln aqq a, cee alj cee aln
as asy coe azj cee azn as as eee azj eee azn
_ + . (1.18)
bil biZ coe bt] cee bin cll ch eee cij eee Cin
anl anz cee an] cee ann anl anz cee an] cee ann

Note. This property remains correct for any number of summands.

Property 5. If even one row is a linear combination of several another rows, the
determinant is equal to zero.
In particular, determinant is equal to zero if
o even one row of a determinant is zero;
o even two rows of a determinant are equal,;
o even two any rows are proportional.
Property 6. If any row of a determinant is added to any linear combination of
several another rows, that the value of a determinant will not change.
In particular, determinant will not change if
o one any row is added to another row;
o if'a multiple of any row is added to another row.

For example, if i # k, then

all alz e oo alj e oo aln

as asy eee azj coe azn

ail +Aak1 aiz +/ltlk2 eee aij +Aakj coe ain +/ltlkn

a,, a,; a

nl nj

- 18-



all alz e oo al

asq (15%) coe azj cee azn

_ coe cee  ees  ses  ses coe . (1.19)
a1 a;r eee A cee  a;,

Ayp Quy cev Qpi oo Ay,

Properties of determinants are useful for their simplifying and numerically
evaluating.
One of the simplest determinants to evaluate is that of an upper triangular

matrix (1.4), i.e. if A= (a;), where a; = 0 if i >j, then

detA= all ‘a22‘...‘a (1.20)

nn-
Note. If A is a lower triangular matrix or in important special case when A is a diagonal

matrix (1.2), equation (1.20) remains true.

In particular, as it easy to see,
detE=1-1-...-1= 1. (1.21)
To evaluate a determinant numerically, it is advisable to reduce the matrix to
row-echelon form, recording any sign changes caused by row interchanges,
together with any factors taken out of a row, as in the following example.
Example 1.5. Find the determinant
1 21

— W

1 4 5
6 1 2|
1 3 4

Solution. Using notation of row operations (where R; denote i-th row, —

denotes the change of a row, <> denotes the interchange of rows), we obtain

(corresponding operations are explained in the braces)

-19-



_— g W =

Theorem (determinants multiplication).

— O\ e

0
0
0

1
0
0
0

W = A N
AN U -

-2
-1
0

1
-1

0

0

-2
-13
1

2
-13
24
0

-5
3

1
-5
12
5/2

={R2 —)_3R1 +R2,R3 —)_7R1 +R3,R4 —)—Rl +R4}=

1 1 2 1
R Rl 0 -1 -13 -5
= AN = —
3 2 0 -2 -2 2
0 0 1 3
1 1 2 1
0 -1 -13 -5 (R 1R+R}
= —_ - — =
0 0 24 12 4 24 374
0 0 1 3
5

~1:(-1)-24-> = 60.

In addition we’ll consider theorems which will be useful further.

Determinant of the product of

several matrices of the same order is equal to product of determinants of these

matrices.

In particular, for two matrices we have

det (4B) = (det A)(det B).

(1.22)

Corollary. 1t is easy to see that, as it follows from definition of a scalar multiplication of a

matrix and from (1.22), det (A E)= A" and thus

det (A A)=det (1 E- A)= A" det A.

-20 -



Theorem. The sum of the entries in any row (column) of matrix A4
multiplied by cofactors of respective entries in other row (column) is equal to

zero, namely

n n

Magdy=0if iz k (DajAy=0if j=k). (1.23)
j=1 i=1

3. Solving systems of linear algebraic equations

1.6. The inverse of a square matrix

A square matrix A of size nxn is called invertible or nonsingular if there
exist a square matrix 4 ™! of the same order such that

AA ' =E=47'4, (1.24)

where E denotes the nxn identity matrix and the multiplication used is ordinary

matrix multiplication. If this is the case, then the matrix A4~' is uniquely
determined by A4 and is called the inverse of A.

A square matrix that is not invertible is called singular or degenerate. Matrix
inversion 1s the process of finding the matrix A7 that satisfies the prior
equation for a given invertible matrix 4.

If A is an nxn matrix, the adjugate or adjoint of A, denoted by A" or

adj A, is the transpose of the matrix of cofactors. Hence

All A21 L] Anl

« Ay, Ay ... A
4" = 12 22 n2 . (1_25)

Ay, ... A

nn
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Remark. The adjugate is a matrix which plays a role similar to the inverse of a matrix; it
can however be defined for any square matrix without the need to perform any divisions.

As a consequence of Laplace’s expansion (1.13) for the determinant of an

nxn matrix A and theorem (1.23), we have

detd 0 ... 0
. 0 detd ... 0
AA = A" = = (det A) E. (1.26)
0 0 .. detd

From here and from (1.24) follows, that if det 4 # 0, then the inverse A
exists and is given by formula for inverse

1 .
A7 A",

= 1.27
det 4 ( )
Of course, if 4! exists, then, as it follows from (1.22) and (1.26),
det (4471 = (det A)(det A7 ')=det E=1 # 0. Therefore
1 1
det A~ = . (1.28)
det 4

Thus from all aforesaid follows one of the most important results in matrix
algebra, namely: a matrix A4 is invertible if and only if its determinant is
nonzero.

Addition. It is easy to prove that the inverse of an invertible matrix 4 is

itself invertible and is equal to the original matrix, i.e.
(A “) =4
and the inverse of the transpose is the transpose of the inverse
(AT)—I _ (A—I)T
Also it is shown, that if 4 and B are square matrices of the same order with

inverses 4 ' and B! respectively, then

(4B)'=B'a™". (1.29)
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Remark. In the definition of an invertible matrix A, we used both 4 4 Tand 474 to
be equal to the identity matrix. In fact, we need only one of the two. In other words, for a
matrix A, if there exists a matrix A 1 such that 447 = FE then A is invertible and A -1

is inverse of A.

3 2 1
Example 1.6. Find the inverse of A=(2 -1 1.
1 5 0

Solution. Calculate det A and cofactors to elements of 4: detA= — 2,
A31 == 3, A32 = - 1, A33 = - 7.

-5 5 3
Then adjugate of 4 is 4" =| 1 -1 —1| and we find the inverse of A:
11 -13 -7)

. . -5 5 3 (5/2 -=5/2 —-3/2

A7l = A'=-=-|1 -1 -=-1|l=]|-1/2 1/2 1/2
det 4 2

11 -13 -7 (-11/2 13/2  17/2

Note. This way is efficient to calculate the inverse of small matrices (since this method is

essentially recursive, it becomes inefficient for large matrices).
1.7. The concept of system of linear algebraic equations

A system of n linear algebraic equations in n unknowns Xy, X,,...,X

. 15 a
family of respective equations and can be written in unfolded form as
a; Xy +apx, +...+a,x, = by,
Ay X; + Ay Xy +...+ay,x, = by, (1.30)
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where a; (i,j=1,2,...,n) are called coefficients of a system, b, b,,...,b,

are called free terms. If at least one free term is nonzero then system is called
nonhomogeneous. Otherwise, 1.e. if all free terms simultaneously are equal to
zero, the system is called homogeneous.

If exists a set of n values x;, x,,...,x, wWhich satisfy each of the equations

simultaneously, i.e. turn a/l equations of system (1.30) into true identities, then it
is called a solution of system. A system of equations is called compatible or
consistent if it has at least one solution. A system that has no solution is called
incompatible or inconsistent.

Note that the above system can be written concisely as

n
D ajx;=b; for i=1,2,.,n (1.31)
j=1

The square matrix
all alz oo 0 al

A= as (15%) cee My, (1.32)

anl anz cee ann

is called the coefficient matrix of the system. The column vector

X1 b,

Xy . b2
X= is called the vector of unknowns and the column vector B =

xn bn

is called the vector of free terms. Then the system (1.30) can be rewritten in

compact matrix form

AX=B. (1.33)
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1.8. Solving a system of equations using an inverse

If coefficient matrix 4 is an invertible matrix, the system of linear algebraic

equations represented by (1.33) has a unique solution given by
X=A47'B. (1.34)

Example 1.7. Use an inverse matrix to solve the system

2x1 - xz + X3 - 6,

xl + 5x2 - - 3.

Solution. A coefficient matrix of set system is considered earlier in an
example 1.6. Since its determinant is not zero, then the solution of system exists

and 1s unique, namely

-5 5 3 5 -4 -2
1 1 1
X=4 B=—5 1 -1 -1}|| 6 =3 2 |=|-1|.
11 -13 -7)(-3 -2 1
Thus, the solutionis x; = -2, x, = -1, x3=1.

Substitution of the found values of unknowns into equations shows, that the

solution is found truly.
Remark. Check of all equations is obligatory!

Geometrically, solving a system of linear equations in two (or three)
unknowns is equivalent to determining whether or not a family of lines (or

planes) has a common point or intersection.

1.9. Cramer’s rule

To finish this section, we present an old (1750) method of solving a system
of n equations in » unknowns called Cramer’s rule. This method is not used in
practice. However it has a theoretical use as it reveals explicitly how the solution

depends on the coefficient matrix.
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Theorem (Cramer’s rule). The linear system AX = B has an unique solution
if and only if matrix A4 is invertible. In this case, the solution is given by the so-

called Cramer's formulas:

]

A.
X; = Xl for i=1,2,...,n, (1.35)

where A = det A4 1is called the principal determinant of a system, and

determinants A; are obtained from A by replacing the i-th column by the

column B of free terms and are called auxiliary determinants:

ay Ay - @g by a4y,

Ay @y ... Gy by ay, .. a4y,
A i=

Ay Ay - Auig bn Apiv1 -+ Qpy

Proof. Suppose the principal determinant A% 0. Then inverse 4~ exists

and is given by (1.27) and the system has unique solution

(xp) (b)) (A Ay oer Ay (b))
X2 b, Ay Ay ... Apn || b
RN TN B | e eee |
X; bi A Ali AZi ceoe Ani bi
\Xn/ \bn/ \Aln A2n Ann) \bn)
(byAy +byAy +...+ b, A,
bjA, + by Ay, +...+ b, A,
I T TP TP
A | bjAy; + byAy; +...+ b, A,;
\blAln + bZAZn + .+b Ann)
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However the i-th component of the last vector is i-column expansion of A;.

Hence
(x; ) (A (A{/A)
xZ AZ Az/A
_ l I IEEEEEE
xi A Al Al/A
\Xn ) \A,) \A,/A)

Example 1.8. Use Cramer’s rule to solve the system given in example 1.7.

Solution. Since the principal determinant of a system A= —2 and is not

zero, then the solution exists and is unique. Therefore we can apply Cramer’s
rule.

Find auxiliary determinants:

s 2 1 3 5 1 3 2 5
A=16 -1 1/=-4, A,=12 6 1|=2 A;=(2 -1 6 |=
-3 5 0 1 -3 0 1 5 -3
=-2.
.. A A
Then solution is x; = —L= 2, x, = ﬁ= —1, x3= —>=1 and, as we see,
A A A

has coincided with earlier found.

Addition. One important result is obtained in particular case, when linear
system AX = B is homogeneous, i.e. B = 0. Then if A4 is invertible, the system
has only trivial solution X = 0. However if matrix A is noninvertible, then (in
addition to trivial solution) homogeneous system will has also nonzero solution.

From previous follows, that this will happen if and only if det 4 = 0.
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Section 2

VECTORS

1. Introduction to vector algebra

2.1. Fundamental concepts and notations

There are quantities in physics characterized by magnitude only, such as
time, temperature, mass and length. Such quantities are called scalars. They
are nothing more than real numbers and will be denoted as usual by letters a, b,
¢, ... iIn ordinary type.

Other quantities characterized by both magnitude and direction, such as

force, displacement, velocity and acceleration. To describe such quantities, we

introduce the concept of a vector as a directed line segment (arrows) MN from
one point M called the initial or beginning point to another point N called the
terminal or end point. The direction of the arrow (the angle that it makes with
some fixed directed line of the plane or space) is the direction of the vector, and
the length of the arrow represents the magnitude or length of the vector.

We’ll denote vectors as usually by letters with an arrow over them, i.e.

- - -

a,b,c,... . Vector MN (where it is assumed that the vector goes from M to N)

also can be denoted by a asin Fig. 2.1.

Fig. 2.1

According to this the magnitude (length) of a vector a or MN will denoted

3] or [MN|

respectively by
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Two vectors a and bare said to be equal if they have the same magnitude
and direction regardless of their initial points. Thus we write a=bh.

A vector whose magnitude is that of 5, but whose direction is opposite that
of 5, is called the negative of a and is denoted — a [see Fig. 2.1].

A vector, which has a magnitude of zero but its direction is not defined, is

called the null or zero vector and is denoted by symbol 0.
Unless indicated otherwise, a given vector has no fixed position in the plane

or in the space and so may be moved parallel displacement at will. In particular,
if aand b are two vectors [Fig. 2.2], they may be placed so as to have a
common initial point M [Fig. 2.3] or so that the initial point of b coincides

with the terminal point of a [Fig. 2.4].

N
N
b b .
) b
— M ~ P M -~ p
a a a
Fig. 2.2 Fig. 2.3 Fig. 2.4

The angle between two nonzero vectors a and bis simply the angle
between the directions of these vectors. If the vectors have a common initial

point (so-called standard position), then the angle @ between them [Fig. 2.3] is

the corresponding angle 0<@ <180° ( or 0<¢@ <) between their respective

standard position representatives. Further we’ll also denote this angle by (5,/\6).
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2.2. Linear vector operations and their properties

Two basic linear vector operations are scalar multiplication (multiplying a
vector by a number, i.e. scalar) and vector addition (subtraction). These
operations familiar in the algebra of numbers are, with suitable definition,
capable of extension to an algebra of vectors. Also, as we’ll see, these operations

satisfy many properties similar to those for numbers.

Multiplication of a vector a by a scalar A produces a vector Aa with
magnitude M‘ times the magnitude of a and direction the same as or opposite

to that of a according as A is positive or negative [Fig. 2.5]. A vector having

unit magnitude is called unit vector. Therefore if a is any nonzero vector, then

—

—_— —_

o a o . . . . .
the vector a” = — such that |a |=1, is called a unit vector in the direction of
a
a. Then a = |ala°. Unit vectors provide a way to represent the direction of

any nonzero vector. Any vector in the direction of 5, or the opposite direction,

is a scalar multiple of this unit vector a° .

1_.
~ - - —a
a 2a 2

Fig. 2.5
The sum or resultant of the vectors a and b is the vector a+ b which can
be found in either of two equivalent ways:
1. By placing the initial point of b on the terminal point of a as in Fig. 2.6.
Then the required sum is the vector MN joining an initial point of a to the

terminal point of b. This procedure is called the triangle law for vector

addition.
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Fig. 2.6

2. By placing the initial point of b on the initial point of a and completing
the parallelogram MPQN as in Fig. 2.7. The required sum is a diagonal MQ
of the parallelogram. This way of vector addition has received the name of

the parallelogram law.

Fig. 2.7

Extension to sum of more than two vectors are immediate. Thus it is
necessary to note, that the terminal point of a previous vector must coincides
with an initial point of a following vector. Then the sum vector is the vector

joining the initial point of the first vector to the terminal point of the last vector.

For example, in Fig. 2.8 is shown how to obtain the sum of the vectors ;1, l;, c

and &

-31 -



at+b+c+d

Fig. 2.8

The difference of the vectors a and b is the vector a—b which can be
defined in either of two equivalent ways:
1. From the relation a—b= a+ (- l;), where addition is realized according

to triangle law as in Fig. 2.9.

&

a—b -b
a—b=a+(=b)
Fig. 2.9

2. As that vector which added to b (according to triangle law) gives 5, 1.e.

l;+(;1— l;)= a. This way is shown in Fig. 2.10. In other words,

subtraction is defined as the inverse operation of addition.

=pl!
Y
I
=nl
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As it easy to see the vectors a+b and a—b coincide with the diagonals

of the parallelogram formed by vectors a and b [Fig. 2.11].

a+b

-

a

Fig. 2.11

If 5, b and ¢ are vectors, and A and u are scalars, then the following

properties of linear vector operations are valid.
l.a+b=b+a (Commutative Law for Addition).
2. a+ (B + E) = (5 + B) +c (4Associative Law for Addition).
3. A(u 5) =(A u)a =u(A 5) (Associative Law for Multiplication).
4. (A + u);i =Aa+ u;i (Distributive Law).
5. 4 (5 + B) =la+Ab (Distributive Law).

Note that in these laws only multiplication of a vector by one or more

scalars is defined. The products of vectors will be defined later.
6.a+0=a.
7.a+(—a)=0.

8. 10=0, —0=0, 0a=0.

Example 2.1. Find the lengths of diagonals of the parallelogram formed by

vectors a and b if |a|=8,

B‘=6,(o= (a"b)=60°.
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Solution. Taking into account that the diagonals of the parallelogram

coincide with the vectors a+b and a—b [see Fig. 2.11], we’ll find the

— —

lengths of diagonals as a—b‘ and 5+B‘. Using the law of cosines, we
receive

-~ =2 =2 =2 - = o 1

‘a—b‘ =|a +‘b‘ —2‘aHb‘cos¢=8 +6 —2-6-8-5=52, hence
5—6‘= 213 ~7,21. Also we know that

a-bf + [arn[ =2 [af +[b ),
Then ‘5+B‘2= 2-(82 +6%)—52 =148, hence ‘£+B‘ = 237 = 12,17.
2.3. Vectors in rectangular coordinate system

Three vectors 5, b and ¢ not in the same plane (i.e. not coplanar) and no
two parallel, issuing from a common point are said to form a right-handed (or
dextral) system or triad if ¢ has the direction in which the right-threaded
screw would move when rotated through the smaller angle (less than 180°) in
the direction from a to B, as in Fig. 2.12. Note that, as seen from a terminal

-

point of ¢, the rotation through the smaller angle from a to b is

counterclockwise.
If a, b and ¢ are also unit mutually orthogonal vectors them usually
designate by 1,] and Kk and say these vectors form right-handed
i

orthonormalized basis. Thus

j=‘1?‘=1andﬂjLE.

Let’s choose a rectangular coordinate system Oxyz having equal units of

measure on all axes. Let also the positive Ox, Oy and Oz axes having the
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Fig. 2.12
direction of the vectors i, j', kK respectively as in Fig. 2.13. This system is called

right-handed rectangular coordinate system and special vectors i, j, k are

often called coordinate vectors.

Fig. 2.13

Suppose we have an ordered triple (x, y, z) of real numbers [see Fig. 2.13].

The point in the space associated with this ordered triple is found as intersection
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point of three planes constructing perpendicular to the axes Ox, Oy and Oz
through the points x, y, z respectively. There is exactly one point in the space
thus associated with an ordered triple (x, y, z), and, conversely, each point in
space determines by exactly one ordered triple (x, y, z) of real numbers. This
procedure establishes a so-called one-to-one correspondence between ordered
triples of real numbers and points in the space. Three numbers x, y and z, where
(x, v, z) 1s the triple corresponding to the point M, are called, respectively, the x,

¥, z coordinates of M, and we write M = (x, y, z) or M(x, y, z). The only point
0(0, 0, 0) common to all three axes is called the origin. The vector r=0M
joining the origin to point M is called the position vector or radius vector of M.
We note i is the position vector of the point (1, 0, 0), i is the position vector of

(0, 1, 0) and k is the position vector of (0, 0, 1).

Construct the parallelepiped as in Fig. 2.14. Using the linear vector operations

>

i

j =‘ k‘=1, we receive

and taking into account

r=xi+yjtzk. @2.1)

ZI
s

M (x,y,3

N—’

[

v

Fig. 2.14

Remark. The fact that the point with coordinates (x, y, z) is associated with the vector r in

this manner is shorthandedly indicated by writing ¥ = {x, y, z} (it is so-called component
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form of a vector). Strictly speaking this equation makes no sense; directed line segment
cannot possible be a triple of real numbers, but this shorthand is usually clear and saves a lot
of verbiage. Thus we frequently do not distinguish between points and their position vectors

and say about one-to-one correspondence between them.

Let’s call xi, yi’ and zK the vector components of r. As it follows from
(2.1) the position vector of any point in space can be expressed as a linear
combination of its vector components. The scalars x, y and z will be called the
scalar components (or the x component, y component and 7 component, or

simply the components [coordinates] ) of r. Note that 0 = 0i+ Oj'+ 0kK.

If M (x,y,z) and M,(x,,y,,2,) [see Fig. 2.15], then the vector

MM, , as it easy to see, is the difference of the position vectors OM, and

=(xy —x)i H(y =)tz —zDk ={ x, —x;, ¥, =y, 2, =71 (2.2)
Remark. As we see, components of the vector are differences of corresponding coordinates

of its terminal point and initial point.

z A
Zy
2 M, M,
(0 1 %)
X /\ >
X2

Fig. 2.15
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Denote components of MM, by X = x, —=x;, Y = y,—y,, Z = z,—2z,.

Then MM, =Xi + Yj +Zk = { X, ¥, Z }. It is clear that [see Fig. 2.16] line

segment MM, is the diagonal of parallelepiped constructing on the vectors X i,

- —

Yj and ZKk. Hence, by the Pythagorean  theorem,

MM, ‘2 = X[+ ‘j‘2+ Z|” ‘E‘2= X 4+v+ 22,

Therefore the magnitude of M;M, i1s

MM, = VX2 472+ 27 = - x)2 + (- ) + (- 2) . @3)

Note that this is the distance between points M, and M ,.

~ |

Fig. 2.16

If a= {X,,Y,,Z,} and b = {X,,Y,,Z,}, then the following properties
are true.
l.a=bifandonlyif X,= X,, Y, =Y, Z = Z,.

2. Aa = {AX,, AY,, AZ,} for A any scalar. 2.4)

3.atb={X t+ X,, Y, t Y, Z, + Z, L

a

-38 -



Example 2.2. Find the magnitude of the vector 3a+2b if a= {-1,2, -5}
and b is the vector joining the point M, (3, — 2, 0) to the point M, (4, 2, —3).

Solution. The components of the vector b by the formula (2.2) are

Xy=4-3=1, Y, =2-(2)=4, Z,= -3-0=-3. Using (2.4), we find

3a+2b ={3-(=)+2-1, 3-242-4, 3-(=5)+2-(=3)} = {—1, 14,-21}.

Then by the formula (2.3)

3a+ 26‘ = J(=1)? + 142 + (=21)? = 638 ~25,26.

2.4. Division of the segment in the preassigned ratio

Let MM, is the line segment connecting the points M, (x,, y;,z;) and
M,(x5,¥9,2,) [see Fig. 2.17]. Let’s find the coordinates of the point
M (x, y,z) on the segment, such that M divides the segment in the preassigned

MM

ratio A > 0, that is, such that = A.

2

Fig. 2.17

Let’s consider the vectors M;M and MM, [see Fig. 2.17]. Since the

direction of the vector MM is the same as to that of MM, , then MM =

= A MM, . Taking into account that M\M= { x—x,, y—y;, z—z;}, MM, =
={ x, =X, y,—V, z—z}, according to 1-2 of (2.4) we obtain x—-x; =

=A(xy=x), y=y1 = A(y,-y), z—z; = A(z;—z). Hence
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X +Ax, _Ntiy L Z1+ Az, 2.5)
1+ 4 1+4 1+4

b

In particular, if M 1is the midpoint of the segment, 1.e. M bisects MM,,

M M )
then ]1‘/[ = =4 and, from formulas (2.5), we receive
2
X +x Y1+ D)
X= ——=, y= —==, z= ——=. 2.6
2 T 2 (2.6)

Thus, the coordinates of the line segment’s midpoint are the average values of
the respective coordinates of the endpoints.
As application of formulas (2.5) let’s consider the problem of searching the
centroid’s coordinates of a plane region bounded by a triangle with vertices in

the points M, (x;, y1,2), M5 (x;, ¥2,2;) and M3(x3, y3, 23).

M,

Fig. 2.18

As it 1s known, required point C is the point of intersection of triangle’s

medians [see Fig. 2.18]. For example, K 1s the midpoint of the side M,Mj5.

. + +
Therefore, as it follows from (2.6), Xy = Xt > 3 . Vg = V2 : V3 ’
Zy + z3 . . o o
Zg = o Also it is known, that the point C divides each median in the
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M,C 2

ratio 2:1 from corresponding vertex. Thus, in particular, =7 Then from
formulas (2.5) by substituting A =2 we finally receive
X+ X, +x Vi+ Yy, +y Zi+z,+z
xe="1—"2 53 gy =22 2205 Q.7)
3 3 3
Example 2.3. In the triangle with vertices in the points A(-3, 4, 1),

B2, —2,3)and C(7, —12, 3) find the coordinates of the point E that bisects
the segment AD if it is known that the point D divides the side BC in the ratio
3:2.

Solution. Supposing A =3/2in formulas (2.5), we’ll find the coordinates of

3 3
Xp+_xo 24—
the point D : Xp = 2 - 2 =5,
3 5
1+ — =
2 2
3 3
yB+§yC —2+§-(—12) zg+ -z 3+_--3
yD= 2 = 2 =—8, ZD= 2 = 2 =3.Then
3 5 3 5
1+ = ~ I+ ~
2 2 2 2
, + -3+5 +
by formulas (2.6) we receive xp = *a*p =1, yp = Ya7Ib _
2 2 2
4 — 1
S8y =Bt I s, -2,2).
2 2 2

2.4. Projecting a vector on the axis

Let a is any nonzero vector and s is a certain axis. The scalar projection of

the vector a on the axis ;, denoted by Pr ;;, is defined as the product of the

magnitude of a and the cosine of the angle between a and s. In symbols,

—

a

Pr;z_i =|ajcosQ, (2.8)
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where @ = (E,Aé) (0<@<m) is the smaller angle that a makes with the

positive s -axis [see Fig. 2.19]. It is easy to see that Pr : a>0 < 0< o<m/2,

Pr;;i:O < @=x/2 and Pr;£<0 & 7w/2<@ < mw, where the symbol

13

<7, as usually, means “ if and only if ” or “equivalently”.

ajcosO=|a

Remark. 1t is clear that Pr -a = .Hence Pr:i = Pr JJ =Pr k=1

>
.

i|<[;

because

=‘k‘=l.Alsowen0tethat Prij = Pril_{ =Prji =Prjk =
= Pr Ei = Pr Kj = 0 because i L j LK, ie. respective angles are equal to /2.

If a and b are two nonzero vectors and A is the scalar, then following

properties of the projections are true:

1. Pr ; (5 + l;) = Pr- at Pr ;l; (Chasles’s theorem) [see Fig. 2.19].

2. Pr;(l;)=ﬂPr;;

o

>B»
- s
a — ,
Pr-a Pr-(a+bh)
Fig. 2.19
As it follows from (2.8),
Pr-a
CosSQ = ‘f 2.9)
3|

Also it is obvious that the projections of the vector a= {X,,Y,,Z,} onthe

positive Ox, Oy and Oz axes are the projections of this vector on respective unit
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coordinate vectors i, j, k. Taking into account the properties of the projections,
and also the stated remark, we receive

Pr0xa=Pria=Pri (X, i+ 7Y, j+ Zak)=XaPrii+ YaPrij+ ZaPrik =

= X,1+Y,-0+Z,-0 =X,. Likewise, Prg,a=7Y, and Prg,a= Z

a-’
— — —

Denoting  projections by a,= Proya, a,=Prgya, a,= Prg,a,

we finally obtain

@.11)

1.e. the scalar projections of a vector on the coordinate axes are the same as

respective components of this vector.

2.5. Direction cosines of a vector

Let the vector a= X, i+ Y, j’+ Z, k make angles a, B and vy,
respectively, with the positive Ox, Oy and Oz axes, as in Fig. 2.20.

z

~ |

v

Fig. 2.20
. . ~Az “A= “A
Then, taking into account, that & = (a, i), B = (a, j) and ¥ = (a, k), and by

formulas (2.3), (2.9), (2.11), we obtain so-called the direction cosines of a
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—
—

Proa Pr.a X

a

cosa = —— — = ,
a a \/Xj +Y+ 272
Pro,a Pr -2 Y
cosf= "= 1 - e 2.12)
a a| X247+ 7
Pr Oz 5 Pr Kk a Za
COSy = ———= ——=——= — ~-
a a| X247 +7
Since, as it easy to see,
cos’a +cos” B +cos’y =1, (2.13)

the vector cosa - i+ cos B- i +cosy - k is the unit vector in the direction of 5,

1.€.

[e]
s

={cosa,cos B,cosy}. (2.14)

&

Note that (2.13) is an important property of the direction cosines.

Example 2.4. Find the component Y of the vector a = {9, Y, V59 yoaf

cos@ =+/2/3 and c0s,3=—\/§/2.

Solution. Using the property of the direction cosines (2.13), we obtain

2 1
a — cos” p=1- 5 % = 36 Then from the last formula (2.12)

cos’ y=1- cos’

Y? 1 5
—, whence 35Y°=140. Thus Y =% 2.

it follows that =
92+ Y2 +(/59)* 36
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2. Scalar product
2.7. Concept of a scalar (or dot) product

The scalar product of vectors a and B, denoted by a-b (read a dot B) is

defined as the product of the magnitudes of a and b and the cosine of the angle

between them. In symbols,

—

a

—

a-b= b‘cosqo (2.15)

where @ = (5:\6) (0< @ < ) is the smaller angle between the two vectors when
they are drawn with a common initial point [see 2.1 and Fig. 2.3]. The scalar
product is frequently also called the dot product. Note that a-b is a scalar and

not a vector.
2.8. Fundamental properties of a scalar product

From the definition we can derive the following properties of the scalar

product.
1. a-b=b- (Commutative Law).
2. A-(a-b)= (La)-b=a-(1b)
and (A- ;1)-(;1-B)= (l-,u)-(;l-ﬁ)= (,u-a)-(lﬁ) where A and u are
the scalars (A4ssociative Law for Scalar Multiplier).
3. a (B + E) = a-b+a-c (Distributive Law).

>

i

2

—

a

—_

a

—

a

—_ -

4. a-a= cos 0= , whence

> >

In particular, i-i= i . i =k -k = 1 because i

=‘E‘=land
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¥

i:il;=l;= 0 becauseiLjLE.

o

5. 5-6=0<:>{5=60r b= 0 or 5=B=60r5J.B}.

Remark. The symbol “1” usually means that vectors a and b are orthogonal (or
perpendicular).The terms “perpendicular” and “orthogonal” almost mean the same thing.

Perpendicularity of vectors means nothing but @ = /2. But the zero vector has no

direction, so technically speaking, the zero vector is not perpendicular to any vector.

However, the zero vector is orthogonal to every vector. Except to this special case, orthogonal

and perpendicular are the same. Then we say a-b=0< a L b (ie. a-b= 0if and

only if a and b are perpendicular).

Also we note that a-b>0< 0<@p<xm/2and a-b<0e wl2<@<rm.

2.9. Some applications of a scalar product
2.9.1 Angle between vectors

We can use the scalar product to find the angle ¢ between any two nonzero

vectors a and b.

As it follows from (2.8),

cos @ = ;T}B‘ (2.16)
Hence
@ = arccos ; : ‘Bﬁ‘ 2.17)
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2.9.2 Projecting one vector onto another

The scalar projection of any vector a on any nonzero vector b , denoted by

Pr ;, in accord with (2.8), is defined as the product of the magnitude of a and

the cosine of the angle ¢ between a and b [see Fig. 2.21]. In symbols,

—

a/cosQ. (2.18)

Prl—)a—

Substituting instead of cos @ its expression (2.9) we obtain

—

—

Proa=|a| = r ‘ T‘ (2.19)
Likewise, the scalar projection of bon a is
Pr_b H ar (2.20)

[see Fig. 2.21].

Note. a-b is the product of the length of a and the scalar projection of b on a, ie.

a-b= =‘b‘-PrBa.

—

Fig. 2.21
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The vector projection of any vector a on any nonzero vector b , denoted by

Pr v ;, is defined as the product of the scalar projection of a on b and the unit

vector in the direction of b. In symbols,

—_

‘31
‘El
-
=

Pr-a= Pr-a-b’=|a-— |- — =|—|-b. 2.21)
o o) o[ {Jsf
Likewise, the vector projection of bon a is
= -~ |- a|la |ab]|-
Pr-b= Pr-b-a =|b-— | = = > |-a. (2.22)
a a a a ;

Note. If a is a force vector, then Pr pa represents the effective force in the direction of

B [see Fig. 2.22].

We can use vector projections to determine the amount of force required in different

problems.

o

- >

Prl—)a

Fig. 2.22

2.9.3 Work

If F is a constant force, then the work W done by F in moving an object

from the initial point of s to its terminal point is

cos @, (2.23)

—

W= F-s=|F[[s

where @ = (ﬁ,/\g).
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Remark. From (2.21) it follows that the work is a scalar product of the effective force in

—_— — >

the direction of s with s, i.e. W= Pr F-s.

2.10. Expressing of the scalar product and its applications

in terms of rectangular coordinates

Let’s find directly the scalar product of the vectors a = {X,,Y,,Z,} and
b=1{X,,%,2Z,}:
a-b=(X, i+Y, j+Z K) (X i+, j+ Z, k)=

=X, X, i-i+ X, Vi-j+ X, Z,i-K+Y, X, j-i+Y, Y, j-j+
+Y,Z,j-k+Z, X, k-i+Z, Y, k-j+ Z, Z, kK.
According to property 4 of a scalar product finally we receive
a-b=X, X, +Y,Y,+Z Z,. (2.24)
Thus we see that is remarkably simple to compute the scalar product of two

vectors when we know their components.

The condition of perpendicularity of two nonzero vectors now takes a form
X, X,+Y,Y,+Z,Z,=0< a Lb. (2.25)
Substituting (2.24) into (2.16), (2.19) — (2.22), we obtain
o the cosine of the angle between a and b
X, X, +Y, Y, +Z,Z,
VX247V + 22 X2+ V2 + 27

cos @ = (2.26)

Note. If cosq,, cos B; and cosy, are the direction cosines of a and cosa,, cos f3,

and €OSY¥, are the direction cosines of b, then, as it follows from (2.12) and (2.26),

COSQ =COSQ; COSQ, + €O0s B, cos B, + cosy,coS8Y,. 2.27)
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o the scalar projections
- ab_ X, X,+Y,Y,+Z,7,
b G eniez

, (2.28)

-~ _a-b_ X, X, +V, YV, +Z,Z
Pr;b=a b b b
JX2+72+ 22

(2.29)

—

a

Note. With use of (2.24) the correlations (2.11) may be proved more simply, namely

—

. oa.i ~ a.d ~ a-k
a = Proa=2lox, a=Pra=2d=y, 4 =pr roa= =2,
7l ™ [l
where a = {X_,Y,,Z .}, i={1,0,0}, j = {0, 1,0}, k = j =‘l?‘= 1.
o the vector projections
Pr-b= A(X, i+ Y, j+Z,k), (2.31)
X, X, +Y, Y, +7Z, 7 X, X, +Y, Y, +7Z, 7
where B = a b2 azb 2a b , A = a b2 azb 2a b '
Xy +Y, +Z; X, +Y, +Z,

o the work done by the force F= {Xp, Ye, Zp} on s = AB from the point
A(x,, y4, z4) tothe point B(xgz, vg, z5)
W= Xp(xg—x )+ Ye(yg -yt Zp(zp—2zy) (2.32)

Example 2.5. Find the angle between vectors 2a—-3b and a+2b , and also

- ,-(2a=3b),if a=3i-2j+4k and b={-1,2,-3}.
Solution. Let’s find the coordinates of required vectors, using (2.4):
2;1—3l;={2-3—3-(—1), 2:(-2)-3-2,2-4-3-(-3)}={9,-10,17},
a+2b={3+2-(=1), =2+2-2, 4+2-(=3)}={1,2,—2}. Then by formula

(2.24) we receive (2a—23b)-(a+2b) = 9-1+(=10)-2+17-(=2) = — 45. Since
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5+2B‘=J12 +22 4(=2)> =3, then

25—3B‘=J92 +(=10)? +172 = /470,

2a-3b)-(a+2b 4
by formula (2.16) we find cos p= 22 =30) @+2b) 45 __ co)
2a-3b a+2b‘ J470 -3

whence @ = —arccos 0,692 =2,34[rad.] (or ¢ =133°47"). Now by formula

- - (2a-3b)-(a+2b) 4
(2.19) we calculate Pr - 25(23_31)) _ (22 ?ib) (f-l_ b)=__5=—15.
ar a+2b‘ 3

Example 2.6. Find the effective force ﬁ in the direction of the vector

d=3i+ 5]’ —4K and a magnitude of this force if F= {7,7,—11}.
Solution. Using the formula (2.30) where a=F and b= ?1, we obtain the

effective force
— T7-3+7-5+(-11)-(—4)
Fe = 2 . <2 2

3 +5°+(—4)

(¢

1 > - .
{3,5,—4}=%{3,5,—4}=6i+10j—8k.

Hence the magnitude of the effective force is

F,|= 67 +10% + (- 8)% =102 ~ 14,14.

Example 2.7. Find the work done by a 30 Newton force acting in the

direction d = {—1, 2, — 2} in moving an object from A4(3, 1, 0) to B(6, — 3, 12).

Solution. The force F has magnitude ‘f‘ =30 and acts in the direction &, SO

The direction of motion is from A(3, 1, 0) to B(6, — 3, 12), sOAB = {3,—4,12}.

‘::.1

Fld° = (—i+2j-2k)=10(=i+2j-2K).
D2 +2% 4 (=2)>

F=[F| = =[F >

=Ty

Thus [see formula (2.32)], the work done by the force is
W=F-AB=10[(-1)-3+2-(-4) + (-2)-12]= — 350 [Joules].
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3. Vector and triple scalar products

In mathematics, the vector product is a binary operation on vectors in a three-dimensional
space. It differs from the scalar product in that it results in a vector rather than in a scalar. The
idea of vector product is motivated by the wish to find a vector that is perpendicular to two
given vectors. The vector product and the scalar product are two ways of multiplying vectors

which see the wide applications in geometry, physics and engineering.

2.11. Concept of a vector product and its geometric meaning

Let a and b be two noncollinear vectors. Their vector (or cross, or outer,

or external) product is defined as a vector axb perpendicular to both a and b

and whose
o magnitude is the product of the magnitude of ;, the magnitude of b , and

the sine of the smaller angle ¢ (0< @ < 7 ) between a and b , 1.€.

a

axb‘=

b ‘sin(o : (2.33)

o direction is such that the three vectors ;, b and axb (in that order) form a

right-handed triad.
Thus,

—_
—

a

—

axb= b‘sin(p n’, (2.34)

—_—

where n° is the unit vector normal to the plane of a and b , so directed that ;,

b and n° form a right-handed triad as in Fig. 2.23.

—

b ‘sin(o can be interpreted as the

a

axb‘=

The magnitude of a vector product

unsigned area of the parallelogram whose nonparallel sides are aand b:

S= |a

h (h= ‘l;‘sin(o) [see Fig. 2.23].
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bxa=
——axb
Fig. 2.23
If we observe that [axb ‘ =|a|lb ‘wll — cos’ @ , then, using (2.16), we receive

very useful formula

a

;XBL=J

2.12. Algebraic properties of the vector product

2‘6‘2 _(a-b)*. 2.35)

1. If the order of a and b is reversed, then in (2.34) n° must be replaced by
—n° . Hence,
axb=-bxa, (2.36)

1.e. the vector product is anticommutative.

Since the unit coordinate vectors i, j', k form right-handed triad, it follows
that

ixj=k, jxk=i, kxi=j, (2.37)
i’xi=—E, kxj=—i, ixk=-j.
2. 5x(6+6)=5x6+5x5 (Distributive Law). (2.38)

Notes. 1. Also (a+b)x(c+d)=axc+axd+bxc+bxd.
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2. If EXB = EXE and ;1;& 6 then ;xﬁ —EXE= 6 and, by the distributive
law above 2 X (B - E) =0. Now, if a is parallel to (E - E), then even if
a%0itis possible that (E - E) # 0 and therefore that b # ¢ .

However, if both ;1 . B = ;1 . E and ;x B = 5 X E , then we can conclude that
b = c. This is because if (E - E) # 6, then it obviously cannot be both

—

parallel and perpendicular to another nonzero vector a.
3. Vector product is compatible with a scalar multiplication so that
A(axb)=(la)xb=ax(ib)=(axb)A, (2.39)
where A 1is a scalar.

4. If two nonzero vectors a and b are parallel or a=b ,then @ =0 (or @ =
) and sin@ =0, hence axb= 0. On the contrary, if axb=0 and a and b

are nonzero vectors, then a and b are parallel (we’ll denote this fact by 5‘ ‘l; ).
Thus,

axb=10 < al |b. (2.40)
In particular, axa= 0 and then
ixi=jxj=kxk=0. (2.41)

Example 2.8. Simplify the expression (35xj—2l¥xi+l§xj)x(5i+2j).

Solution. By (2.37) —(2.39) and (2.41),
Bk—-2j—i)x(5i+2j)=15kxi+6kxj—10jxi—4jx j—5ixi—2ixj=
=15j—6i+10k —2k =—6i+15j+8k.

2.13. One physical application of a vector product: torque
The vector product of two vectors is orthogonal to both of them. Its main use
lies in this fact.
So, geometrically, the vector product is useful as a method for constructing a

vector perpendicular to a plane if we have two vectors in the plane.
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Physically, it appears in the calculation of torgue and in the calculation of the
magnetic force on a moving charge. Here we’ll consider first of them.

In physics, torque can informally be thought of as “rotational force” or
“angular force” which causes a change in rotation motion. This force is defined
by linear force multiplied by a radius. Thus, the torque is the rotation analogue
of force. The force applied to a lever, multiplied by its distance from the lever’s

fulcrum, is the torque.
Mathematically, the torque 7 is defined as the vector product:
7=rxF, (2.42)
where r is the radius vector from axis of rotation to point of application of the

force F as in Fig. 2.24.

=1l

Fig. 2.24
Torque has dimensions of force times distance and the SI units of torque are

stated as “Newton meter” [ N-m] and its direction is determined by the right-

handed rule.

A practical way to calculate the magnitude of the torque is to first determine
the lever arm and then multiply it times the applied force. The lever arm p is
defined as the perpendicular distance from the axis of rotation to the line of
r

action of the force, i.e. p=|r|sing@ [see Fig. 2.24]. Thus,
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T r

—p[F-

F ‘sin(o . (2.43)
Note that the torque is maximum when the force is perpendicular to the

vector ;, 1.e.when p=7w/2.

2.14. Expressing of the vector product in terms

of rectangular coordinates

When a = {X,,Y,,Z,} and b = {X,,Y,,Z,}, then we have, by the
distributive law and with the account of (2.37) and (2.41),
axb =(X, i+ Y, j+ Z,k)x (X,i+ Y, j+ Z, k)=
= X, X, ixi+ X, Y, ixj+ X, Z,ixk+Y, X, jxi+ Y, Y, jxj+
+Y,Z, jxk+Z, X, kxi+Z, Y, kxj+ Z, Z, kxk =
=X, Y, k=X, Z,j-Y, X, k+Y, Z,i+Z, X, j—Z, Y, i=
=Y, 2y =2, V)= (X, Z,=Z, X)) j+ (X, ¥, =Y, Xp) k.

This result may be written more compactly in the form of determinant:

i j Kk
axb=|X, Y, Z,|. (2.44)
Xb Yb Zb

Remark. The determinant in (2.44) is usually write down in the form of first-row Laplace

expansion (1.13).

Thus the area of parallelogram with sides a and b can be calculated as

- —

i j kK
S= 5x6‘=‘ X, v, z,||=
Xb Yb Zb
= 2y~ Z, Y, (X, Z, = Z, X,)* + (X, Y, Y, X))’ (2.45)
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and the area of the triangle with vertices in the points 4 (x,, y,, z,4),

B(xg, yp, zg)and C (xc, yc, z¢ ) 1s given by formula

Qo
~ |

Xp=X4 Yp—Y4 Zz—Z4||- (2.46)

The condition (2.40) of parallelism of two nonzero vectors a and B,
according to 5-th property of determinants [see 2.2 of section 1], now takes a
form

4
L= 4 ="%oallb. (2.47)
X, Y, Z

Example 2.9. Find the magnitude of the torque produced by the force

F=3i+4j— 2k, which applied to the point M ( 2, —3, 7 ), if the initial point of
the radius vector is A( 2, — 11, 1). Find also the lever arm and sin¢ [Fig. 2.24].

Solution. The radius vector is r= AM= {2—-2,—3+11,7—1}={0,8,6}.
Then by (2.42) and (2.45) we obtain

—

i j kK
7|= ;xf‘= ‘ 0 8 6 ‘=‘—40§+18]’—24l;‘=\/402+182+242=
3 4 -2

= /2500 = 50. The magnitude of the force is |F =\/32 +42 +22 =429,
g

—

r

=82 +6% =10 and, by (2.43), the lever arm 1s p=1=—=—~9,28 and
F| 29

the angle which radius vector r makes with respect to the line of action of the

force is
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—

singp = ol _ 50
Efr‘ 10429

Example 2.10. Find the height CD of the triangle ABC if its sides are

~ 0,928.

AB= 35 - 4(] and BC =B + 5(], where E and (] are unit mutually orthogonal

vectors.

Solution. The area of the triangle, by (2.36), (2.38), (2.41) and (2.46), is
l V= == 1 .- - - _- l,- - - -
SAABC= E‘ABXBC=E‘(3p—4q)x(p+5q)‘ = E‘3pxp+15pxq—

AB-CD

- = - = 1 - = 19 :
—4qxp—20qxq‘ = E‘l9pxq‘ = 7sin%= 9,5. Since Spapc = 5

and 4B = |AB| = VAB-AB =+/(3p-4q)-Gp-4q) = 3> +4>=5 by

28
aaBc _ 19 _ 3.8

properties of a scalar product, then CD = ————= —
48|

2.15. Addition: Triple vector product

Vector multiplication of three vectors ;, b and ¢ produce product of the
form ax (l; X E) (or (5 X l;) X ¢ ) which is called triple vector product.
Using (2.44), it is possible to show that

- > — - - -

ax(bxe¢) = (a-¢)b—(a-b)ec. (2.48)

- > — — > -

Similarly, (axb)xc = (a-¢)b—(b-c)a. (2.49)
Thus, except when b is perpendicular to both a and E,
zlx(l;xé) #* (Exﬁ)xé,
1.e. triple vector product is not associative, and the use of parentheses is

necessary.

The following identities are valid:
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Jacobi’s identity

ax(ﬁxé)+l;x(6x;1)+5x(;1xﬁ)=6, (2.50)
Lagrange’s identity
(axb)-(exd)= |2 ¢ 4 _G.Om-d)-@-d)b-9). (@51
b-¢ b-d

2.16. Concept of a triple scalar product and its geometric meaning

Scalar and vector multiplication of three vectors ;, b and ¢ produce product

of the form (;1 X B) ¢ (or 5-(6 X E)) which is called triple scalar (or box, or

mixed) product.

Let consider that ;, b and ¢ are three noncoplanar vectors, which form

right-handed triad as in Fig. 2.25.

Fig. 2.25

Denote by 6 the smaller angle between ¢ and axb. Then the triple scalar
product (;1 X B) .¢ is by definitions (2.15) and (2.34)
c

(axﬁ)-é = |a

—_— —bAﬁ _o’ —_ —_— —_— . —bAﬁ
b‘sin(a, b)n -¢c= ‘aHb‘sm(a, b)|c|cos 0.
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—

a

—

Since b ‘sin(;l,/\ B) is the area S, of parallelogram formed by the vectors

-

C

—

a and B and

cos 0 =Pr ok c= h,, where 0<0<x/2, is corresponding

height of parallelepiped formed by ;, b and E, then (Ex B) c= S;-h; is
numerically equal to volume V of this parallelepiped.
Similarly, if we denote by y the smaller angle between a and bxc
[see Fig. 2.25], then we’ll receive:

- A -
cisin(b, ¢) -¢=S,-h,,

5-(l;x5) = ‘a‘cosy/‘l;

—

where S, = ‘b

-

c sin(lﬁ),/\g) is the area of parallelogram formed by the vectors

l;andéandh2= a

cosy =Pr. - a (0w <m/2) is corresponding height
of the same parallelepiped.

Thus, (;1 X B) ¢ = 5-(6 X E) , 1.e. in a scalar triple product the dot and cross,

which denote a scalar and vector products respectively, can be interchanged
without affecting the result. Since the parenthesis in a triple scalar product are
not necessary and usually omitted, the more so, as writing (;1 . B) x ¢ is without
meaning. Therefore triple scalar product can be written in the simplify form

—_ — -

abc.
2.17. Geometric properties of a triple scalar product

As it easy to see, if the vectors ;, b and ¢ formed left-handed triad as in

P , and therefore

Fig. 2.26, then 7#/2<6@ <z . Hence, in this case h; = —Pr - -

V=- (axb)-c.
Thus,
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o the triple scalar product is in absolute value numerically equal to the volume

of a parallelepiped formed by ;, b and ¢:

—_ — -

V =|abc

; (2.52)

— — -

o 1f the vectors ;, b and ¢ formed right-handed triad, then abe¢ >0, and
conversely;
o 1f the vectors ;, b and ¢ formed left-handed triad, then EBE<O, and

conversely.

Note. The volume of the pyramid prr formed by the vectors a, b and ¢ numerically is

equal to V/ 6.

|

Fig. 2.26

It is obvious that if the vectors ;, b and ¢ are noncoplanar then

—_ — -

abc # 0 (and conversely), and if the vectors ;, b and ¢ are coplanar then V =0,

—_ — -

i.e. abe =0, and conversely, i.e.

- - - —_ — -

(a,b,c are coplanar) < abc=0. (2.53)

Remark. In particular, the triple scalar product is equal to zero if only one factor is zero

vector or if only two factors are parallel (or equal each other) vectors.
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2.18. Expressing of the triple scalar product in terms

of rectangular coordinates

Let a={X,Y,Z,},b=1{X,,Y,Z,} and ¢ ={X,,Y,,Z.}. Then, by

(2.44),
i j Kk

a-(bxec)= (X, i+ Y, j*+Z k)| X, Y, Z, |=(X,it+Y,j+Z,K)-
XC' YC ZC'

(Y, Zo= 2, V) i= (X, Z,- Z, X,) j+ (X, V.- Y, X,) k] =
= X, (Y, Z.=Z, V) = Y, (X, Z,~Z, X))+ Z,(X, Y, =Y, X,).

This result may be written more compactly in the form of a determinant:

Xa Ya Za
abc=|X, Y, Z,|. (2.54)
XC YC ZC

2.19. Algebraic properties of a triple scalar product

All properties of the triple scalar product, including its geometrical
properties, follow from the properties of the determinants [see 2.2 of section 1].

For example,

X Yo Z, Xy Y, 2, Xy Y, 2,
abc=|X, Y, Z|=-|X, Y, Z, =-bac=|X, Y. Z.|=bca.
XC YC ZC XC YC ZC Xa Ya Za

Similarly, we can prove that abc = cab= — ach = — EBE.Thus,
abc = beca = cab (2.55)
and abc = —bac = — ach = — cba, (2.56)
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1.e. the triple scalar product does not change at cyclic (circular) rearrangement of
the vectors, but it changes the sign at the rearrangement of any two neighboring
vectors.

The following laws are valid:

Associative Law for scalar factor

— — -

[(Aa)xb]-c= [ax(Ab)]-c= (axb)-(Ac) = A(abe), (2.57)
Distributive Law

(axb)-(c+d)=abc+abd, (2.58)
(a+b)-(exd)=acd +bed, (2.59)
(A + u)(abe)=Aabc+ uabe. (2.60)

Example 2.11. Simplify the expression (5 + B) . [(B + E) X (E + ;1)] :

Solution. Using the properties of the vector product and the triple scalar
product and, in particular, taking into account the remark to (2.53), we obtain
(5+l;)-(l;xE+l;x;1+gx5+Ex5)=(5+B)-(Bx5+6x5+5x5)=

—_ — - — - — — — -

=abc+bca=2abc.

2.20. Some applications of a triple scalar product

Let a={X,Y,Z,},b=1{X,,Y,,Z,}and ¢ ={X,,Y.,Z }. Then, as
follows from the geometric properties of a triple scalar product and from (2.54),

the volume of a parallelepiped can be calculated by the formula

X, Y, Z,

a
XC YC ZC
X, Y, Z,

a

- - -

and also (a,b,c arenoncoplanar) < | X, Y, Z,|#0, in particular,
X, Y. Z,

C
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Xa Ya Za

(i_i ,B ,E formed right-handed system) < | X, Y, Z,|>0, (2.62)
XC YC ZC
Xa Ya Za

(i_i ,B ,E formed left-handed system) < | X, Y, Z,|<0. (2.63)
X, Y. Z.

The condition of coplanarity of three vectors (2.53) now takes a form

Xa Ya Za
(;,B ,E are coplanar) & | X, Y, Z,|=0. (2.64)
XC YC ZC

The volume of the pyramid with vertices in the points 4 (x,, V,, Z,4)

B(xg, yg, z5), C(x¢c, yc, z¢)and D (xp, yp, zp) 1s given by the formula

| | Xp—=X4 Vp—Vyq4 ZBp—Zy
prr=g‘ B AC D‘=g‘ Xc—=Xyq4 Yc—V4q4 Z2c—Z4

Xp~=Xy YD ~YVa4 Zp —Zy

Xq Ya 2y
‘ Xp YB ZB
Xe Yo Zc

Xp Yp Zp

N —

(2.65)

S T G Sy

Note. If the points 4, B, C and D all lie in the same plane, then

Xq Ya4 24
Xp VB ZB
Xe Yo Zc

Xp Yp Zp

=0, and conversely.

S T G S—

The following identities are valid:

—_ = — —_ - —

acd bcd

— —

— - — - - o —

1. (axb)x(exd)= = b(acd)-a(bed). (2.66)

a
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a-d a-e a-f
2. (abe)-(def)=|b-d b-e b-f (2.67)
c-d c-e cf

In particular, with taking into account the scalar product’s commutativity,

we obtain

~2 - - -~ -

a a-b a-c
= —— —— - - -2 - -
(abc)” =(abc)-(abc) = |a-b ‘b‘ b-c|=

-~ - - - -2

a-c b-c C

= ([a][p] ¢| >+ 2a-by - ey (a-©) - [a[ (b 12 - [b[ @~ 77 -

2 - -
(a-b)>.

-

C

The last ratio can be applied to the calculation of the volume of the

parallelepiped with the edges a, b, ¢, which come out from the same vertex, and
planar angles between them o = (a’b), = (b"c), y = (a’c) as it shown in

Fig. 2.27.

Fig. 2.27

Then

V= abc \/ ‘ 1+ 2cosa cos B cosy — cos’ @ — cos? B - cos’ y ‘ . (2.68)
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Example 2.12. Show that the vectors 5=—4i—3j—9l_£, l;=i—l:,

-

c=—5i- 4]’ +3K are noncoplanar and determine the orientation of respective

system, formed by these vectors.

—4 -3 -9
Solution. By (2.54), abc=| 1 0 —1|= —15+36+9+16=46.
5 -4 3

—- — - — — -

Since abe #0 then the vectors ;, b and ¢ are noncoplanar. Since also abe >0

then, according to (2.62), the vectors ;, b and ¢ formed right-handed system.
Example 2.13. Find the height DE of the pyramid with vertices in the points
A2,3,1), B4,1,-2),C(6,3,7)and D (-5, — 4, 8).
Solution. By (2.65),

2 -2 -3

— 1 1 154

Vor=—|ABACAD|=—| |4 0 6 \=—84+84+56+84=i.
6 R 6 3

1 3V .
Also V.= =S apc * DE, from which DE = PYL_ . For the calculating the
3 S AaBC

1 — —
area of a triangle ABC we’ll use the formula (2.35): S Apc = 5‘ ABx AC| =

_ %\/‘@‘E‘EF_(@.A—C’V _ %¢(4+4+9)-(16+36)—(8—18)2 =

_ L 17-52-100 =14. Thus, DE = ﬁ=11.
2 14

Example 2.14. Find the volume of the parallelepiped with the edges

a=23 , b=15, ¢ = 6, which come out from the same vertex, and planar angles
2
between them a = (a,"b) = ?ﬂ, B = (b,’\c) = %) y = (a,’\c) = %
Solution. By (2.68),

1.1 1 1 1 1 V3
V=2J3-56- || 142 (-2) —— ———— —— — = 60/3- X2 =90.
V3 \/‘ ) 5 5y a |60
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