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I N T R O D U C T I O N 

 
     Linear algebra is the branch of mathematics concerned with the study of 

systems of linear equations, vectors, vector (or linear) spaces and linear maps 

(or linear transformations). It is an old subject and originally its development 

dealt with transformation of geometric objects and solution of systems of linear 

equations. The history of modern linear algebra began in nineteenth century, 

when W. Hamilton (he is also the author of the term vector) in 1843 discovered 

the quaternions,  J. Sylvester in 1848 introduced the term matrix, and A. Cayley 

in 1857 developed the matrix theory, one of the most fundamental linear algeb-

raic ideas. In recent years linear algebra has begun to rival calculus as a most 

commonly used subject in mathematics. It is widely used in different branches 

of mathematics, in particular, abstract algebra and functional analysis, and also 

has a concrete representation in analytical geometry and it is generalized in ope-

rator theory. Theory and methods of modern linear algebra has also extensive 

applications to mechanics and engineering, computer science and coding theory, 

biology and medicine, economics and statistics, and,  increasingly, to manage-

ment and social sciences. The general method of finding a linear approach to the 

problem, expressing in the terms of linear algebra, and solving it, is one of the 

most widely used, because nonlinear models can often be approximated by a li-

near one, and the leaving from nonlinear problems is very important for practice.   

      This textbook is a basic introduction to the principal ideas and techniques of 

linear algebra and is intended for students of technical specialization. The first 

part of this text is dedicated to matrices, determinants and solving of linear sys-

tems. In spite of the fact that historically the early emphasis was on the determi-

nant, not the matrix, in modern treatments of linear algebra matrices are conside-

red first. We acted in the same way. The second part is an introduction to vec-

tors and include the basic concepts of vector algebra and its some applications to 

problems of geometry and physics. 
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S e c t i o n   1 
MATRICES,  DETERMINANTS  AND  SYSTEMS  OF 

LINEAR  ALGEBRAIC  EQUATIONS 

 

1.  Matrices 

 
     Historical reference.  The study of matrices is quite old. Latin squares and magic squares 

have been studied since prehistoric times. 

     Matrices have a long history of application in solving linear equations. An important 

Chinese text from between 300 BC and AD 200, Nine Chapters of the Mathematical Art 

(Chiu Chang Suan Shu), is the first example of the use of matrix methods to solve 

simultaneous equations. The term “matrix” was first coined in 1848 by J.J. Sylvester. Cayley, 

Hamilton, Grasmann, Frobenius and von Neumann are among the famous mathematicians 

who have worked on matrix theory. 

 

1.1. Fundamental concepts 

 

     A matrix A is a rectangular table of real or complex numbers or, more 

generally, a table consisting  of abstract quantities (for example, vectors, 

functions) that can be added and multiplied. The horizontal lines in a matrix are 

called rows and the vertical lines are called columns. A matrix with  m rows and 

n columns is called an m-by-n matrix (written nm  ) or a matrix of size nm  . 

Numbers n and m  are called dimensions of  matrix  A.  They are always given 

with the number of rows first, then the number of columns. 

A matrix is usually written in the form 

                              





















mnmm

n

n

aaa

aaa
aaa

A

...
............

...

...

21

22221

11211

                                            ( 1.1) 
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     The entry of a matrix A that lies in the i-th row and j-th column is called the  

i, j entry or ( i, j )-th entry of  A. This is written as ija . The convention is that the 

first index denotes the row and the second index denotes the column. Therefore 

matrix A is often written simply in the form  ija . Entries ija  are usually called 

the elements or components of matrix A. The elements  inii aaa ,...,, 21 are the 

elements of the i-th row of  A, and the elements  mjjj aaa ,...,, 21  are the 

elements of the j-th column.  

     A matrix where one of the dimensions equals one is often called a vector. A 

row vector or row matrix is a  n1  matrix (one row and n columns) 

 naaa 11211 ...   while a column vector or column matrix is an 1m  

matrix (m rows and one column) 



















1

21

11

...

ma

a
a

.   

     A matrix of size nn  is said square matrix of n-th order. In a square matrix 

A, the elements   niaii ...,,2,1  are named its principal diagonal elements 

and form a principal diagonal. The elements   nia ini ...,,2,11,    are 

named a secondary  diagonal elements and form a secondary  diagonal of 

matrix A. 

     A matrix, all elements of which are equal to zero, is called the zero matrix 

and is denoted by the symbol 0. 

     A matrix  

                        

























nn

nn

a
a

a
a

00...000
00...000

.....................
000...00
000...00

1

22

11

,                              (1.2) 
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which has all of its elements zero except the diagonal ones, i.e.  0ija for all 

ji  , is called the diagonal matrix. 

     In a special case  )...,,2,1(1 niaii    the  diagonal matrix is called the 

identity matrix of order nn and denoted by  

                       E =  























100...000
010...000

.....................
000...010
000...001

.                                (1.3) 

     A square matrix  A  whose elements satisfy 0ija  for all ji  , is called an 

upper triangular matrix, i.e., 

                                  





















nn

n

n

a

aa
aaa

A

...00
............

...0

...

222

11211

 .                                         (1.5) 

A lower triangular matrix can be defined in a similar fashion, i.e.  0ija  for 

all ji  . A diagonal matrix (1.2) is both an upper triangular matrix and a lower 

triangular matrix. 

 

1.2. Matrix  arithmetic 

 

     Equality of matrices.  Two matrices A and B are said to be  equal  if  they 

have the same size and corresponding elements are equal. That is,  ijaA   

 (i = 1, 2, … , m; j = 1, 2, … , n) and  ijbB    (i = 1, 2, … , m;  j = 1, 2, … , n)  

and ijij ba   for i = 1, 2, … , m,  j = 1, 2, … , n. 
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    Addition of matrices. If   ijaA    and   ijbB   are two nm   matrices, 

their sum A + B is an nm   matrix obtained by adding corresponding elements 

of  A and B. Thus A + B =  ija  +  ijb  =  ijij ba    for  i = 1, 2, … , m, 

 j = 1, 2, … , n. 

     Subtraction  of  matrices. Matrix subtraction is defined for two matrices  

 ijaA    and   ijbB   of the same size, in the usual way. That is  

BA   =   ija  ijb  =  ijij ba    ( i = 1, 2, … , m; j = 1, 2, … , n ). 

     Remark.  Two matrices of the same order are said to be conformable for  addition and 

subtraction. Addition and subtraction are not defined for matrices which are not conformable.       
     Scalar multiplication of a matrix. If   ijaA    is an nm   matrix and     is 

a number (scalar), then A  is a matrix obtained by multiplying  all elements of  

A  by  ; that is    ijij aaA    ( i = 1, 2, … , m; j = 1, 2, … , n ).  

     Therefore,       ijaAA  1  . 

 

   Example 1.1.             .
21

52
,

21
43






















 BA                              

.
21

225
4623
101249

42
104

63
129

23 










































 BA   

           

          The matrix operations of addition, subtraction and scalar multiplication 

satisfy the usual laws of arithmetic (in what follows,   and    will be arbitrary 

scalars and A, B, C  are matrices as assumed to be conformable).  

1. A  +  B  =  B + A. 

2. ( A + B ) + C  =  A + ( B + C ). 

3. 0 + A  =  A.                                                                                              (1.6)                         

4. A +  ( A ) = 0. 

5. .)( BABA                                                                             
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6. .)( AAA    

7. .)()( AA    

8. 1A = A,  0 A = 0. 

9. 00   A  or  A = 0.   

Matrix product.  Let   ijaA   be a matrix of size nm   and  jkbB   be a 

matrix of size pn . Then product AB of matrices A and B is the  pm   matrix  

 ikcC   whose ( i, k )-th element is defined by the formula     

                      



n

j
jkijnkinkikiik babababac

1
2211 ... ,                 (1.7) 

where   i = 1, 2, … , m,  k = 1, 2, … , p.  
  Remark.  The product AB is defined only when the number of columns of A is equal to the 

number of rows of  B. If this is the case, A is said to be conformable to B for multiplication. 

If A is conformable to B, then B is not necessarily conformable to A. 

 

   Example 1.2.        








































13
42

41
,

331
122
315

BA , 

 

 
.

514
159
2116

)1()3()4(3413)3()2(311
)1(1)4()2(4231)2()2(12
)1(3)4()1(4533)2(115








































AB

 

          Matrix multiplication obeys аssociative and distributive laws: 
   

1. ( AB ) C = A ( BC )  if  A, B, C  are  qppnnm  ,,  matrices 

respectively. 

2.   ( AB ) = (  A ) B = A (  B ) . 

3. ( A + B ) C = AC + BC  if A and B are matrices of size nm   and C is 

pn  matrix (“right distributivity”). 
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4. A ( B + C ) = AB + AC  if B and C are matrices of size nm   and A is 

mp  matrix (“left distributivity”). 

5. A E  = E A = A  if  A is any nn  matrix, that is, E is the multiplicative 

identity for the set of nn  matrices. 

6. In general, BAAB  , i.e. even if  BA is defined, it is not necessarily equal 

to AB. Therefore in general,  AB = 0 does not imply A = 0 or B = 0, and 

AB = AC does not necessarily imply B = C .  

 

1.3. Transpose matrix 

 

      Let  A is the matrix (1.1) of size nm  . Then the matrix of size mn  

obtained by interchanging the rows and columns matrix A is called the 

transpose of  A  and is denoted by  TA .  

That is  ji
T
ij aa   or  

              TA  =  .

...
............

...

...

...
............

...

...

21

22212

12111

21

22221

11211







































mnnn

m

m
T

mnmm

n

n

aaa

aaa
aaa

aaa

aaa
aaa

         (1.8) 

  

    It is easily shown that 

  AA TT  , 

  ,TT AA    

                                                 ,TTT BABA                                     (1.9) 

  .TTT ABAB   
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2.  Determinants 
 

    Historical reference.   Historically, determinants were considered before matrices. In the 

seventh chapter of above-mentioned Chinese text (see hist. ref. to 1), “Too much and not 

enough”, the concept of a determinant first appears, almost 2000 years before its invention by 

the Japanese mathematician Seki Kowa in 1683. 

     Originally, a determinant was defined as a property of a system of linear equations. The 

determinant “determines” whether the system has a unique solution (which occurs precisely if 

the determinant is non-zero). In this sense, two-by-two determinants were considered by 

Cardano at the end of 16th century. German Gottfried Leibniz (who is also credited with the 

invention of differential calculus, separately from but simultaneously with Isaac Newton) 

developed the theory of determinants in 1693. Following him Cramer developed the theory 

further, treating the subject in relation to sets of equations, and presented Cramer’s rule in 

1750. The recurrent law was first announced by Bezout in 1764. 

     It was Vandermonde (1771) who first recognized determinants as independent functions. 

Laplace (1772) gave the general method of expanding a determinant in terms of its 

complementary minors: Vandermonde had already given a special case. Immediately 

following, Lagrange (1773)  treated determinants of the second and third order. Lagrange was 

the first to apply determinants to questions outside elimination theory; he proved many 

special cases of general identities. 

     Carl Friedrich Gauss and Wilhelm Jordan developed Gauss-Jordan elimination in the 

1800s. Gauss (1801) made the next advance. Like Lagrange, he made much use of 

determinants in the theory of numbers. He introduced the word determinants (Laplace had 

used resultant), though not in the present signification, but rather as applied to the 

discriminant of a quantic. Gauss also arrived at the notion of reciprocal (inverse) 

determinants, and came very near the multiplication theorem. 

     The next contributor of importance is Binet (1811, 1812), who formally stated the theorem 

relating to the product of two matrices of m columns and n rows, which for the special case of  

m = n  reduces to the multiplication theorem. On the same day (Nov. 30, 1812) that Binet 

presented his paper to the Academy, Cauchy also presented one on the subject. In this he used 

the word determinant  in its present sense, summarized and simplified what was then known 

on the subject, improved the notation, and gave the multiplication theorem with a proof more 

satisfactory than Binet’s. With him begins the theory in its generality.  
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1.4. Basic definitions 

 

     Every square matrix  A  of size nn  can be associated with a unique 

function depending on elements of  A  and possessing some specific properties. 

This function is called the determinant of  a matrix A. 

     The common definition of determinant (the so-called  Leibniz  formula) is 

sufficiently complicated and here is not given. In addition in overwhelming 

majority of cases this definition is useless for practical computations. Therefore 

we shall be restricted to definitions of a determinant for partial cases of matrixes 

22 and 33,  and as definition of a determinant in a common case of a matrix 

nn  we shall conditionally accept one of  ways of  its computation (so-called 

Laplace expansion).  

     The determinant of matrix  A denoted by det A or A .  Second notation is 

also used to denote the absolute value. However, the absolute value of a matrix 

is, in general, not defined. Thus, the notation for determinant by vertical bars on 

both sides of the matrix is frequently used. 

      Determinant of  the second order.  If  A  is a 22 matrix, that is expression  

21122211 aaaa   is called the determinant of  22 matrix or determinant of the 

second order, so 

                              det A =  
2221

1211

aa
aa

 =  21122211 aaaa  .                        (1.10) 

  Example 1.3.    Find a determinant     .72453
54
23





 

     Determinant of  the third order. If  A  is a 33 matrix, that is expression   

 322311322113312312332211 aaaaaaaaaaaa 332112 aaa                    

312213 aaa  is called the determinant of  33 matrix or determinant of the 

third order, so 
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det  A = 

333231

232221

131211

aaa
aaa
aaa

  322311322113312312332211 aaaaaaaaaaaa                     

                                                   .312213332112 aaaaaa                                         (1.11) 

     Minor.  Let   ijaA    be a nn  matrix. The minor ijM  corresponding to 

the element ija  (or simply minor of  ija ) is the determinant of the 

)1()1(  nn  submatrix of  A formed by deleting the  i-th  row and  j-th 

column of  A containing  the element ija . 

     Cofactor.  The  cofactor corresponding to the element ija  (or simply 

cofactor of ija ) is  

                                              .)1( ij
ji

ij MA                                             (1.12) 

   Remark.  The expression    ji 1  obeys the chess-board pattern of signs: 























............

...

...

...

. 

     Determinant of  n-th order.  Let   ijaA    be a matrix of size nn  

 ( n > 2 ).  The determinant of  A  (or determinant of  n-th order) is the sum of 

the entries in any row or any column multiplied by their respective cofactors. 

     Applying this definition to find a determinant is called  expanding by 

cofactors.  

     Expanding by the i-th row called  i-th row Laplace expansion 

            det  A =  



n

j
ijijininiiii AaAaAaAa

1
2211 ...                      (1.13) 

and expanding by the j-th column called  j-th column Laplace expansion 
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            det  A =  ....
1

2211 



n

i
ijijnjnjjjjj AaAaAaAa                   (1.14) 

   Remark.  From last definitions follows, as it is easy to see, that the finding of a determinant 

of n-th order is reduced to a finding of n determinants of (n-1)-th order. Therefore Laplace 

expansion is efficient for computation of determinants of relatively small matrices. In general, 

determinants can be computed using Gaussian elimination. Laplace expansion is of theoretical 

interest as one of several ways to view the determinant, as well as of practical use in 

determinant computation. 
     If  A  is a 33 matrix, then, using the first- row Laplace expansion, we 

receive the definition of determinant of a third order in the form of  

det  A = 

333231

232221

131211

aaa
aaa
aaa

  131312121111 AaAaAa   

            
3331

2321
12

3332

2322
11 aa

aa
a

aa
aa

a   +  
3231

2221
13 aa

aa
a  

          =  322311322113312312332211 aaaaaaaaaaaa                     

              .312213332112 aaaaaa                                                                 (1.15) 

    Note.  A convenient methods for calculating determinants of the third order  are mnemonic 

Sarrus rules. First rule is known as a triangles rule. Schemes of these rules are illustrated by 

Fig. 1.1 and Fig. 1.2. The conditional lines connecting elements of determinants designate 

corresponding products. The products of the elements connecting by dotted lines on Fig. 1.2 

we take with the sign “  ”.  

 

  Example 1.4.    Find a determinant with use of a triangles rule  
 

        





151031144352
301

453
142

 

                                          .45042334   

   Remark.  For reduction of calculations it is best to choose a row or column with the 

greatest quantity of zeros, so we use second-column Laplace expansion:  
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11a  12a
 

13a  

21a  22a 23a  

31a  32a  33a  

11a  

21a  

31a  

12a  

22a  

32a  

11a 12a
 

13a

21a  22a  23a  

31a  32a  33a  

11a 12a
 

13a  

21a  22a  23a  

31a  32a  33a  

           





301
453
142

31
43

4



 





31
12

5  

           .452520)16(5)49(4   

As we see, the received result has coincided with previous. 

 

The first Sarrus rule (triangles rule) 

 

333231

232221

131211

aaa
aaa
aaa

 = 

 
 

       
 

 

  

Fig. 1.1 

  
The second Sarrus rule 

                                  

 

                                

333231

232221

131211

aaa
aaa
aaa

  =   

          

 

 

Fig. 1.2 
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1.5. Properties of determinants 

 

   Property 1.  A matrix and its transpose have equal determinants; that is 

                                                       det A =  det ( TA ).                                   (1.16) 
   Remark.   As it follows from this property the rows and the columns of a determinant are 

equal in rights. Therefore all properties which further we shall formulate with respect to rows, 

are correct and for columns. 

  Property 2.   If  any two rows of the determinant are interchanged, the 

determinant changes the sign. 

    Property 3.   Let  B  is the matrix received from the matrix A  by multiplying 

one row with the number  , then 

                                                         det B =    det A.                                  (1.17) 

For example   






nnnjnn

inijii

nj

nj

aaaa

aaaa

aaaa
aaaa

......
..................

......
..................

......

......

21

21

222221

111211

.

......
..................

......
..................

......

......

21

21

222221

111211

nnnjnn

inijii

nj

nj

aaaa

aaaa

aaaa
aaaa

 

   Property 4.  The determinant is a linear function of each row.  

For example   




nnnjnn

ininijijiiii

nj

nj

aaaa

cbcbcbcb

aaaa
aaaa

......
..................

......
..................

......

......

21

2211

222221

111211
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

nnnjnn

inijii

nj

nj

aaaa

bbbb

aaaa
aaaa

......
..................

......
..................

......

......

21

21

222221

111211

 .

......
..................

......
..................

......

......

21

21

222221

111211

nnnjnn

inijii

nj

nj

aaaa

cccc

aaaa
aaaa

  (1.18) 

   Note.  This property remains correct for any number of summands. 

Property 5.  If even one row is a linear combination of several another rows, the 

determinant is equal to zero.  

    In particular, determinant is equal to zero if 

        even one row of a determinant is zero; 

        even two rows of a determinant are equal; 

        even two any rows are proportional. 

   Property 6.  If any row of a determinant is added to any linear combination of 

several another rows, that the value of a determinant will not change. 

   In particular, determinant will not change if  

       one any row is added to another row; 

       if a multiple of any row is added to another row. 

For example, if  ki  , then   




nnnjnn

kninkjijkiki

nj

nj

aaaa

aaaaaaaa

aaaa
aaaa

......
..................

......
..................

......

......

21

2211

222221

111211


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                                .

......
..................

......
..................

......

......

21

21

222221

111211

nnnjnn

inijii

nj

nj

aaaa

aaaa

aaaa
aaaa

                          (1.19) 

     Properties of determinants are useful for their simplifying and numerically 

evaluating. 

     One of the simplest determinants to evaluate is that of an upper triangular 

matrix (1.4), i.e.  if   ijaA  , where 0ija  if  i  > j, then  

                                   det A =  nnaaa  ...2211 .                                        (1.20) 

   Note.   If  A  is a lower triangular matrix or in important special case when A  is a diagonal 

matrix (1.2),  equation (1.20) remains true. 

     In particular, as it easy to see,  

                                      det E =  1...11   =  1.                                          (1.21) 

     To evaluate a determinant numerically, it is advisable to reduce the matrix to 

row-echelon form, recording any sign changes caused by row interchanges, 

together with any factors taken out of a row, as in the following example. 

   Example 1.5.   Find the determinant  

.

4311
2167
5413
1211

 

   Solution.  Using notation of row operations (where iR  denote i-th row,   

denotes the change of a row,   denotes the interchange of  rows), we obtain 

(corresponding operations are explained in the braces) 
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 },7,3{

4311
2167
5413
1211

414313212 RRRRRRRRR  

 












3100
2220
51310

1211

}{

3100
51310

2220
1211

23 RR  

 

 }2{ 323 RRR 


 }
24
1{

3100
122400

51310
1211

434 RRR  

 






2/5000
122400

51310
1211

.60
2
524)1(1   

     In addition we’ll consider theorems which will be useful further. 

   Theorem (determinants multiplication).  Determinant of the product of 

several matrices of the same order is equal to product of determinants of these 

matrices.  

     In particular, for two matrices we have 

                                           det (AB) = (det A)(det B).                                   (1.22) 
   Corollary.  It is easy to see that, as it follows from definition of a scalar multiplication of a 

matrix and from (1.22),  det ( E) = n  and thus   

                                  det (  A) = det (  E A ) = n  det A. 
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     Theorem.  The sum of the entries in any row (column) of matrix A 

multiplied by cofactors of respective entries in other row (column) is equal to 

zero, namely 

             



n

j
kjij Aa

1
0  if   i   k     ( 




n

i
ikij Aa

1
0  if   j   k  ).                (1.23) 

 

 

3.  Solving systems of  linear algebraic equations 

 
1.6.  The inverse of a square matrix 

    

     A square matrix  A  of size n×n is called invertible or nonsingular if  there 

exist a square matrix 1A  of the same order such that 

                                               A 1A  = E = 1A A,                                       (1.24) 

where E denotes the n×n identity matrix and the multiplication used is ordinary 

matrix multiplication. If this is the case, then the matrix 1A  is uniquely 

determined by A and is called the inverse of A. 

     A square matrix that is not invertible is called singular or degenerate. Matrix 

inversion is the process of finding the matrix 1A  that satisfies the prior 

equation for a given invertible matrix A.      

     If  A  is an  nn matrix, the  adjugate  or  adjoint  of  A, denoted by *A  or  

adj A, is the transpose of the matrix of cofactors. Hence 

                             *A  =  .

...
............

...

...

21

22212

12111



















nnnn

n

n

AAA

AAA
AAA

                                                 (1.25) 
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   Remark.  The adjugate is a matrix which plays a role similar to the inverse of a matrix; it 

can however be defined for any square matrix without the need to perform any divisions. 

     As a consequence of  Laplace’s expansion (1.13) for the determinant of an  

n×n matrix A and theorem (1.23), we have 

     *AA AA*  =  



















A

A
A

det00

0det0
00det







 = (det A) E.                     (1.26) 

      From here and from (1.24) follows, that if  det A   0, then  the inverse 1A  

exists and is given by  formula for inverse   

                                       .
det

1 *1 A
A

A                                                    (1.27) 

     Of course, if  1A  exists, then, as it follows from (1.22) and (1.26),  

det (A 1A ) = (det A)(det 1A ) = det E = 1   0. Therefore 

                                        det 1A  =  .
det

1
A

                                                (1.28) 

     Thus from all aforesaid follows one of the most important results in matrix 

algebra, namely:  a matrix A is invertible if and only if its determinant is 

nonzero. 

     Addition.   It is easy to prove  that the inverse of an invertible matrix A is 

itself  invertible and is equal to the original matrix, i.e.   

                                               AA  11 , 

and the inverse of the transpose is the transpose of the inverse  

                                              1TA   .1 TA   

      Also it is shown, that if  A and  B are square matrices of the same order with 

inverses 1A  and  1B  respectively, then 

                                            111   ABAB .                                            (1.29) 
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   Remark.  In the definition of an invertible matrix  A, we used both  A 1A  and 1A A  to 

be equal to the identity matrix. In fact, we need only one of the two. In other words, for a 

matrix  A,  if there exists a matrix 1A  such that  A 1A = E, then  A is invertible and 1A  

is inverse of  A. 

   Example 1.6.       Find the inverse of  .
051
112
123
















A  

   Solution.  Calculate  det A  and cofactors to elements of  A:  det A =  2 , 

,11,1,5 131211  AAA   ,13,1,5 232221  AAA  

.7,1,3 333231  AAA    

Then  adjugate  of  A  is 






















71311
111

355
*A   and we find the inverse of  A:  

2
1

det
1 *1  A

A
A  






















71311
111

355
.

2/72/132/11
2/12/12/1
2/32/52/5





















  

    Note.   This way is efficient to calculate the inverse of small  matrices (since this method is 

essentially recursive, it becomes inefficient for large matrices).  
 

1.7. The concept of system of linear algebraic equations 

 

     A system of  n  linear algebraic equations in n unknowns  nxxx ,,, 21   is a 

family of respective equations and can be written in unfolded form as 

                                ,11212111 bxaxaxa nn    

                                ,22222121 bxaxaxa nn                                   (1.30) 

                                ………………………………….. 

                                ,2211 nnnnnn bxaxaxa    
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where  ),,2,1,( njiaij   are called  coefficients  of a system, nbbb ,,, 21   

are called  free  terms. If  at least one free term is nonzero then system is called 

nonhomogeneous. Otherwise, i.e. if all free terms simultaneously are equal to 

zero, the system is called homogeneous. 

     If exists a set of  n values nxxx ,,, 21   which satisfy each of the equations 

simultaneously, i.e. turn all equations of system (1.30) into true identities, then it 

is called  a solution of system. A system of equations is called compatible or 

consistent if it has at least one solution. A system that has no solution is called 

incompatible or inconsistent. 

     Note that the above system can be written concisely as  

                           



n

j
ijij bxa

1

 for  .,,2,1 ni                                    (1.31) 

     The square matrix 

                             





















nnnn

n

n

aaa

aaa
aaa

A

...
............

...

...

21

22221

11211

                                              (1.32) 

is called the coefficient matrix of the system.  The column vector  

X =  



















nx

x
x

...
2

1

  is called the vector of unknowns and the column vector  B =  



















nb

b
b

...
2

1

  

is called the vector of  free  terms. Then the system (1.30) can be rewritten in 

compact matrix form 

                                                 A X = B.                                                        (1.33) 
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1.8.  Solving a system of equations using an inverse 

 

     If  coefficient matrix A  is an invertible matrix, the system of linear algebraic 

equations represented by (1.33) has a unique solution given by 

                                                X = 1A B.                                                     (1.34) 

   Example 1.7.           Use an inverse matrix to solve the system  

.35
,62
,523

21

321

321







xx
xxx
xxx

 

   Solution.  A coefficient matrix of set system is considered earlier in an 

example 1.6. Since its determinant is not zero, then the solution of  system exists 

and is unique, namely   

      X = 1A B = 
2
1























71311
111

355
.

1
1
2

2
2
4

2
1

3
6
5


























































 

Thus,  the solution is  .1,1,2 321  xxx  

     Substitution of the found values of unknowns into equations shows, that the 

solution is found truly. 
Remark.  Check of all equations is obligatory!  
     Geometrically, solving a system of linear equations in two (or three) 

unknowns is equivalent to determining whether or not a family of lines (or 

planes) has a common point or intersection. 

 

1.9. Cramer’s rule 

 

     To finish this section, we present an old (1750) method of solving a system 

of n equations in n unknowns called Cramer’s rule. This method is not used in 

practice. However it has a theoretical use as it reveals explicitly how the solution 

depends on the coefficient matrix.  
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   Theorem  (Cramer’s rule).  The linear system  AX = B has an unique solution 

if and only if matrix A is invertible. In this case, the solution is given by the so-

called Cramer's formulas:         

                                            



 i
ix   for  ,,,2,1 ni                                            (1.35) 

where    = det A  is called the principal determinant of a system, and 

determinants i  are obtained from   by replacing the i-th column by the 

column B of free terms and are called auxiliary determinants: 

.

1121

2122122221

1111111211

nnninninn

nii

nii

i

aabaaa

aabaaa
aabaaa













  

   Proof.  Suppose the principal determinant 0 .  Then inverse 1A  exists 

and is given by (1.27) and the system has unique solution 

 



























n

i

x

x

x
x

...

...
2

1

 =  1A  



























n

i

b

b

b
b

...

...
2

1

 =  

1  



























nnnn

niii

n

n

AAA

AAA

AAA
AAA

...
............

...
............

...

...

21

21

22212

12111



























n

i

b

b

b
b

...

...
2

1

 = 

 

=  

1  .

..........................

..........................

2211

2211

2222121

1212111
































nnnnn

ninii

nn

nn

AbAbAb

AbAbAb

AbAbAb
AbAbAb







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However the i-th component of the last vector is i-column expansion of i . 

Hence 



























n

i

x

x

x
x

...

...
2

1

 =  

1  


































n

i

...

...
2

1

 =  


































/
......

/
......

/
/

2

1

n

i
 . 

   Example 1.8.  Use Cramer’s rule to solve the system given in example 1.7. 

   Solution.  Since the principal determinant of a system 2  and is not 

zero, then the solution exists and is unique. Therefore we can apply Cramer’s 

rule.   

     Find auxiliary determinants: 

053
116
125

1


  =  4 ,  

031
162
153

2


  =  2,  

351
612
523

3


  =  

 = 2 . 

Then solution is  ,21
1 




x  ,12
2 




x  13
3 




x  and, as we see,   

has coincided with earlier found. 

     Addition.  One important result is obtained in particular case, when linear 

system AX = B is homogeneous, i.e.  B = 0. Then if  A is invertible, the system 

has only trivial solution X = 0. However if matrix  A is noninvertible, then (in 

addition to trivial solution) homogeneous system will has  also nonzero solution.  

From previous follows, that this will happen if and only if  det A = 0. 
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S e c t i o n   2 

VECTORS 
 

1.  Introduction to vector algebra  

 

2.1. Fundamental concepts and notations 

 

     There  are quantities in physics characterized by magnitude only, such as 

time, temperature, mass and length. Such quantities are  called  scalars. They 

are nothing more than real numbers and will be denoted as usual by letters a, b, 

c,… in ordinary type. 

     Other quantities characterized by both magnitude and direction, such as 

force, displacement, velocity  and acceleration. To describe such quantities, we 

introduce the concept of a vector as a directed line segment (arrows) MN  from 

one point M called the initial or beginning  point  to another point N called the 

terminal or end point. The direction of the arrow  (the angle that it makes with 

some fixed directed line of the plane or space) is the direction of the vector, and 

the length  of the arrow represents the magnitude or length of the vector.  

     We’ll denote vectors as usually by letters with an arrow over them, i.e.  
,c,b,a . Vector MN  (where it is assumed that the vector goes from M to N) 

also can be denoted by a  as in Fig.  2.1.  

 
Fig. 2.1 

 
According to this the magnitude (length) of a vector a  or MN  will denoted 
respectively  by a  or MN . 

b  

a

N

a  

M
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     Two vectors a  and b are said to be equal if they have the same magnitude 

and direction regardless of their initial points. Thus we write a  = b .  

     A vector whose magnitude is that of  a , but whose direction is opposite that 

of  a , is called the  negative of  a  and is denoted  a   [see Fig. 2.1].  

     A vector, which has a magnitude of zero but its direction is not defined, is 

called the null  or  zero vector  and is denoted by symbol 0 . 

     Unless indicated otherwise, a given vector has no fixed position in the plane 

or in the space and so may be moved parallel displacement at will. In particular, 

if  a  and  b   are two vectors [Fig. 2.2], they may be placed so as to have a 

common initial point M  [Fig. 2.3] or so that the initial point of  b  coincides 

with the terminal point of  a   [Fig. 2.4].  

  
              Fig. 2.2                           Fig. 2.3                                 Fig. 2.4 
 
      The angle  between two nonzero vectors a  and b is simply the angle 

between the directions of these vectors. If the vectors have a common initial 

point (so-called standard position), then the angle   between them [Fig. 2.3] is 

the corresponding angle  0 180  ( or  0   ) between their respective 

standard position representatives. Further we’ll also denote this angle by )ba( ,


.  

 

 

 

 

b  

a  
M P

N 

b  

a  M

N 

P


b  

a  
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2.2. Linear vector operations and their properties 

 

     Two basic linear vector operations are scalar multiplication (multiplying a 

vector by a number, i.e. scalar) and vector addition (subtraction). These 

operations familiar in the algebra of  numbers are, with suitable definition, 

capable of extension to an algebra of vectors. Also, as we’ll see, these operations 

satisfy many properties similar to those for numbers.   

     Multiplication of a vector a  by a scalar   produces a vector a  with 

magnitude    times the magnitude of  a  and direction the same as or opposite 

to that of  a  according as   is positive or negative [Fig. 2.5]. A vector having 

unit magnitude is called unit vector. Therefore if  a  is any nonzero vector, then 

the vector 
a
aa   such that 1a , is called a unit vector in the direction of  

a . Then  a  =  .aa   Unit vectors provide a way to represent the direction of 

any nonzero vector. Any vector in the direction of  a , or the opposite direction, 

is a scalar multiple of this unit vector a .  

 
Fig. 2.5 

     The sum or resultant of  the vectors a  and b  is the vector ba   which can  

be found in either of two equivalent ways: 

1. By placing the initial point of  b  on the terminal point of a  as in Fig. 2.6. 

Then the required sum is the vector MN  joining an initial point of a  to the 

terminal point of  b . This procedure is called the triangle law for vector 

addition.                                        

a  a2  
a

2
1

  
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Fig. 2.6 

 
2. By placing the initial point of  b  on the initial point of a  and completing 

the parallelogram MPQN as in Fig. 2.7. The required sum is a diagonal MQ 

of the parallelogram. This way of  vector addition has received the name of 

the parallelogram law.  

 
Fig. 2.7 

 
     Extension to sum of more than two vectors are immediate. Thus it is 

necessary to note, that the terminal point of a previous vector must coincides 

with an initial point of a following vector. Then the sum vector is the vector 

joining the initial point of  the first vector to the terminal point of the last vector. 

For example, in Fig. 2.8 is shown how to obtain the sum of the vectors c,b,a  

and d .   

N 

P 

b  

a

ba   

M 

N 

P 

b  

a  

ba   

Q 

M 
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Fig. 2.8 

 
     The  difference of  the vectors a  and b  is the vector ba   which can  be 

defined in either of two equivalent ways: 

1. From the relation )b(aba  , where addition is realized according 

to triangle law as in Fig. 2.9. 

 

)b(aba   

Fig. 2.9 

2. As that vector which added to b  (according to triangle law) gives a , i.e. 

a)ba(b  . This way is shown in Fig. 2.10. In other words, 

subtraction is defined as the inverse operation of addition.  

 

a)ba(b   

Fig. 2.10 

a

b

c

dcba   

d  

a  

b  ba   

a  

ba   b  
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     As it easy to see the vectors ba   and  ba   coincide with the diagonals 

of  the parallelogram formed by vectors a  and b  [Fig. 2.11]. 

 
Fig. 2.11 

     If  a , b  and c  are vectors, and   and    are scalars, then the following 

properties of linear vector operations are valid. 

   1. abba    (Commutative Law for Addition). 

   2. c)ba()cb(a    (Associative Law for Addition). 

   3. )a(a)()a(     (Associative Law for Multiplication). 

   4. aaa)(      (Distributive Law). 

   5. ba)ba(      (Distributive Law). 

     Note that in these laws only multiplication of a vector by one or more 

scalars is defined. The products of vectors will be defined later. 

   6. a0a  . 

   7. 0)a(a  . 

   8. 00  ,   0  = 0 ,   0 0a  .  

   Example 2.1.   Find the lengths of diagonals of the parallelogram formed by 

vectors a  and b  if  8a ,  6b , 60


)ba( , . 

b  

a  

ba   

ba   
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   Solution.  Taking into account that the diagonals of the parallelogram 

coincide with the vectors ba   and  ba   [see Fig. 2.11], we’ll find the 

lengths of  diagonals as ba  and ba  . Using the law of cosines, we 

receive   

52
2
1862682 22222
 cosbababa , hence 

ba  = 217132 , . Also we know that  







 

2222
2 bababa .  

Then 
2

ba  = 14852682 22  )( , hence  ba   =  .,1712372   

 

2.3. Vectors in rectangular coordinate system 

 

   Three vectors a , b  and c  not in the same plane (i.e. not coplanar) and no 

two parallel, issuing from a common point are said to form a right-handed (or  

dextral)  system  or triad  if  c  has the direction in which the right-threaded 

screw would move when rotated through the smaller angle (less than 180 ) in 

the direction from a  to b , as in Fig. 2.12. Note that, as seen from a terminal 

point of  c , the rotation through the smaller angle from a  to b  is 

counterclockwise.   

     If  a , b  and c  are also unit mutually orthogonal vectors them usually 

designate by i , j and k  and say these vectors form right-handed 

orthonormalized basis. Thus 1 kji  and kji  . 

     Let’s choose a rectangular coordinate system Oxyz having equal units of 

measure on all axes. Let also the positive Ox, Oy and Oz axes having the 
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Fig. 2.12 

direction of the vectors i , j, k  respectively as in Fig. 2.13. This system is called 

right-handed rectangular coordinate system and special vectors i , j, k  are 

often called coordinate vectors.  

 

 
Fig. 2.13 

     Suppose we have an ordered triple (x, y, z) of real numbers [see Fig. 2.13]. 

The point in the space associated with this ordered triple is found as intersection 

x  

z
 

y  

О  i  

j 

k  1 

1 
1 

c  

b  

a  



 - 36 - 

point of three  planes constructing  perpendicular to the axes Ox, Oy and Oz 

through the points x, y, z  respectively. There is exactly one point in the space 

thus associated with an ordered triple (x, y, z), and, conversely, each point in 

space determines by exactly one ordered triple (x, y, z) of real numbers. This 

procedure establishes a so-called one-to-one correspondence between ordered 

triples of real numbers and points in the space. Three numbers x, y and z, where 

(x, y, z) is the triple corresponding to the point M, are called, respectively, the x, 

y, z  coordinates of M, and we write M = (x, y, z) or M(x, y, z). The only point 

O(0, 0, 0) common to all three axes is called the origin. The vector OMr   

joining the origin to point M is called the position vector or radius vector of  M. 

We note i  is the position vector of  the point (1, 0, 0), j is the position vector of  

(0, 1, 0) and k  is the position vector of  (0, 0, 1).  

     Construct the parallelepiped as in Fig. 2.14. Using the linear vector operations 

and taking into account 1 kji , we receive 

                                              r  = x i + y j+ zk .                                                (2.1) 

 
Fig. 2.14 

   Remark.  The fact that the point with coordinates (x, y, z) is associated with the vector r  in 

this manner is shorthandedly indicated by writing r  =  {x, y, z} (it is so-called component 

x  

z
 

y  О

x i  

y j 

zk  

r
1 

M (x,y,z) 
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form of a vector). Strictly speaking this equation makes no sense; directed line segment 

cannot possible be a triple of real numbers, but this shorthand is usually clear and saves a lot 

of verbiage. Thus we frequently do not distinguish between points and their position vectors 

and say about one-to-one correspondence between them. 

     Let’s call  x i , y j and zk  the vector components of r . As it follows from 

(2.1) the position vector of any point in space can be expressed as a linear 

combination of its vector components. The scalars x, y and z will be called the 

scalar components (or the x component, y component and z component, or 

simply the components [coordinates] ) of  r . Note that  0  = 0i+ 0 j+ 0k . 

     If  1M ( 111 zyx ,, )  and  2M ( 222 zyx ,, )  [see Fig. 2.15], then the vector 

21MM , as it easy to see, is the difference of the position vectors 2OM  and 

1OM , i.e.  1221 OMOMMM 2x i  + 2y j+ 2z k  1x i   1y j  1z k  = 

 = ( 12 xx  ) i  +( 12 yy  ) j+( 12 zz  )k  = { 12 xx  , 12 yy  , 12 zz  }.              (2.2) 

   Remark.  As we see, components of the vector are differences of corresponding coordinates 

of its terminal point and initial point. 

 
Fig. 2.15 

x  

y  О
 

1M  2M  

z
 

1x  

2x  

1y  2y  

1z  

2z  
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     Denote components of  21MM  by  X = 12 xx  , Y = 12 yy  , Z = 12 zz  . 

Then  21MM = Xi  + Y j + Zk  = { X, Y, Z }. It is clear that [see Fig. 2.16] line 

segment 21MM  is the diagonal of parallelepiped constructing on the vectors X i , 

Y j and  Zk . Hence, by the Pythagorean theorem,                        


2

21MM 2X
2

i + 2Y
2

j + 2Z
2

k = 222 ZYX  .  

 Therefore the magnitude of  21MM  is   

   21MM .)()()( 2
12

2
12

2
12

222 zzyyxxZYX         (2.3) 

Note that this is the distance between points 1M  and  2M . 

 

 
Fig. 2.16 

     If   a  = { aaa ZYX ,, } and  b  =  { bbb ZYX ,, }, then the following properties 

are true. 

   1. a  = b  if and only if  .,, bababa ZZYYXX   

   2.  a  = },,{ aaa ZYX   for   any scalar.                                          (2.4) 

   3.  ba   =  }.,,{ bababa ZZYYXX   

x  

z
 

y  

Оi  j
 

k Zk  
X i  

Y j 1M
 

2M  
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   Example 2.2.  Find the magnitude of the vector ba 23   if  a  = { 1 , 2, 5 } 

and b  is the vector joining the point 1M (3, 2 , 0) to the point 2M (4, 2, 3 ). 

   Solution. The components of the vector b  by the formula (2.2) are  

303422134  bbb ZYX ,)(, . Using  (2.4), we find 

ba 23   ={ 1213  )( , 4223  , )()( 3253  } = { 1 , 14, 21 }. 

Then by the formula (2.3)  ba 23   =  222 21141 )()( .,2625638      

2.4.  Division of the segment in the preassigned ratio 

     Let  21MM  is the line segment connecting the points 1M ( 111 zyx ,, ) and 

2M ( 222 zyx ,, ) [see Fig. 2.17]. Let’s find the coordinates of the point               

M ( zyx ,, ) on the segment, such that M divides the segment in the preassigned 

ratio   > 0, that is, such that 
2

1
MM

MM .  

 

Fig. 2.17 

          Let’s consider the vectors MM1  and 2MM  [see Fig. 2.17]. Since  the 

direction of  the vector MM1  is the same as to that of  2MM , then  MM1  =  

 2MM . Taking into account that MM1 = { 1xx  , 1yy , 1zz }, 2MM = 

= { xx 2 , yy 2 , zz 2 }, according to 1 2  of  (2.4) we obtain  1xx   =  

= ( xx 2 ),  1yy  =  ( yy 2 ),  1zz  =   ( zz 2 ). Hence  

M  

2M  

1M  
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





1

21 xxx ,  






1

21 yyy ,   






1

21 zzz .                   (2.5) 

     In particular, if  M  is the midpoint of the segment, i.e. M  bisects 21MM , 

then   1
2

1
MM

MM  and, from formulas (2.5), we receive 

                       
2

21 xxx 
 ,  

2
21 yyy 

 ,   
2

21 zzz 
 .                              (2.6) 

Thus, the coordinates of the line segment’s midpoint are the average values of      

the respective coordinates of the endpoints.                                                                           

As application of formulas (2.5) let’s consider the problem of searching the 

centroid’s coordinates of a plane region bounded by a triangle with vertices in                                           

the points 1M ( 111 zyx ,, ), 2M ( 222 zyx ,, ) and 3M ( 333 zyx ,, ). 

 

Fig. 2.18 

     As it is known, required point C is the point of intersection of  triangle’s 

medians [see Fig. 2.18]. For example, K  is the midpoint of the side 32MM . 

Therefore, as it follows from (2.6),     
2

32 xx
xK


 ,  

2
32 yy

yK


 ,   

2
32 zz

zK


 .  Also it is known, that the point C  divides each median in the 

2M  

1M  3M  

K  

C  
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ratio 2:1 from corresponding vertex. Thus, in particular, 
1
21 

CK
CM . Then from 

formulas (2.5) by substituting 2  we finally receive  

         
3

321 xxx
xC


 ,  

3
321 yyy

yC


 ,   
3

321 zzz
zC


 .             (2.7) 

   Example 2.3.      In the triangle with vertices in the points  A( 3 , 4, 1),         

B(2, 2 , 3) and C(7, 12 , 3)  find the coordinates of the point E that bisects 

the segment AD if it is known that the point D divides the side BC in the ratio 

3:2.  

     Solution. Supposing 23/ in formulas (2.5), we’ll find the coordinates of 

the point D :               5

2
5

7
2
32

2
31

2
3










CB
D

xx
x ,  

8

2
5

12
2
32

2
31

2
3










)(CB
D

yy
y ,   3

2
5

3
2
33

2
31

2
3










CB
D

zz
z . Then 

by formulas (2.6) we receive  1
2

53
2







 DA
E

xxx , 



2

DA
E

yyy  

2
2

84



 ,  2

2
31

2






 DA

E
zzz . Thus E (1, 2 , 2). 

2.4. Projecting a vector on the axis 

 

     Let a  is any nonzero vector and s  is a certain axis. The scalar projection of  

the vector a  on the axis s , denoted by aPr s , is defined as the product of the 

magnitude of a  and the cosine of the angle between a  and s . In symbols, 

                                           aPr s  = cosa ,                                                 (2.8) 
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where )sa( ,


  (0   ) is the smaller angle that a  makes with the 

positive s -axis [see Fig. 2.19]. It is easy to see that 0aPr s    20 /  , 

0aPr s    2/   and 0aPr s     2/ , where the symbol 

“ ”, as usually, means “ if and only if ” or “equivalently”.  

    Remark.   It is clear that aPr a  = 0cosa = a . Hence iPr i  = jPr j  = kPr k  = 1 

because 1 kji . Also we note that jPr i  = kPr i  = iPr j  = kPr j  =  

=  iPr k  = jPr k  = 0 because kji  , i.e. respective angles are equal to 2/ .   

     If  a  and b  are two nonzero vectors and   is the scalar, then following 

properties of the projections are true: 

   1.   )ba(Pr s aPr s   bPr s  (Chasles’s theorem) [see Fig. 2.19].  

   2.   )a(Pr s   =  aPr s . 

 
Fig. 2.19 

     As it follows from (2.8),  

                                                
a

aPr
cos s .                                                  (2.9) 

     Also it is obvious that the projections of the vector a  = { aaa ZYX ,, } on the 

positive Ox, Oy and Oz axes are the projections of this vector on respective unit 

aPr s  

a  b  

bPr s  

)ba(Pr s   aPr s  


 

a  

s  

s  
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coordinate vectors i , j, k . Taking into account the properties of the projections, 

and also the stated remark, we receive   

aPr Ox aPr i iPr  ( aX i + aY j+ aZ k ) = aX iPr i + aY jPr i + aZ kPr i  = 

= 001  aaa ZYX  = aX . Likewise,  aPr Oy aY  and  aPr Oz aZ . 

Denoting  projections  by   xa aPr Ox ,  ya aPr Oy ,  za aPr Oz ,          

we finally obtain 

                              xa aX ,  ya aY ,  za aZ ,                                    (2.11) 

i.e. the scalar projections of a vector on the coordinate axes are the same as 

respective components of this vector.   

 

2.5. Direction cosines of a vector 

 

     Let the vector a aX i + aY j+ aZ k  make angles  ,   and  , 

respectively, with the positive Ox, Oy and Oz axes, as in Fig. 2.20.  

 
Fig. 2.20 

Then, taking into account, that )ia( ,


 ,  )ja( ,


  and )ka( ,


 , and by 

formulas (2.3), (2.9), (2.11), we obtain so-called the direction cosines of  a    

x  

z
 

y  

О i

j 

k
 

a

    


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                             
a

aPr
cos Ox 

a

aPr i
222
aaa

a

ZYX

X


,  

                             
a

aPr
cos Oy 

a

aPr j
222
aaa

a

ZYX

Y


 ,            (2.12) 

                             
a

aPr
cos Oz 

a

aPr k
222
aaa

a

ZYX

Z


. 

   Since, as it easy to see,  

                                            222 coscoscos   = 1,                          (2.13) 

the vector kcosjcosicos    is the unit vector in the direction of  a , 

i.e.   

                                               }cos,cos,cos{
a
aa  .                                (2.14) 

Note that (2.13) is an important property of the direction cosines. 

   Example 2.4.  Find the component Y  of the vector  a  = {9, Y, 59 } if 

32 /cos   and  23 /cos  . 

   Solution.  Using the property of the direction cosines (2.13), we obtain 

 
36
1

4
3

9
211 222   coscoscos . Then from the last formula (2.12) 

it follows that  
36
1

599 222

2


 )(Y
Y , whence  14035 2 Y . Thus 2Y . 
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2.  Scalar product  

 

2.7. Concept of a scalar (or dot) product 

 

     The scalar product of vectors a  and b , denoted by ba (read a  dot b ) is 

defined as the product of the magnitudes of  a  and b  and the cosine of the angle 

between them. In symbols, 

                                              cosbaba                                             (2.15) 

where )ba( ,


  (0   ) is the smaller angle between the two vectors when 

they are drawn with a common initial point [see 2.1 and Fig. 2.3]. The scalar 

product is frequently also called the dot product. Note that ba is a scalar and 

not a vector. 

 

2.8. Fundamental properties of a scalar product 

 

     From the definition we can derive the following properties of the scalar 

product. 

   1.  abba    (Commutative Law). 

   2.  )b(ab)a()ba(     

         and  )b()a()ba()()b()a(      where   and   are 

         the scalars  (Associative Law for Scalar Multiplier).                                      

3.  caba)cb(a    (Distributive Law). 

4.  
2

0 acosaaaa  , whence  aaa  .  

     In particular,  kkjjii  1 because 1 kji  and  
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      ikkjji  0  because kji  .             

   5.   ba 0  {a  = 0  or  0b   or  0ba   or  a    b }. 

   Remark.  The symbol “ ” usually means that vectors a  and b  are orthogonal (or 

perpendicular).The terms “perpendicular” and “orthogonal” almost mean the same thing. 

Perpendicularity of vectors means nothing but 2/  . But the zero vector has no 

direction, so technically speaking, the zero vector is not perpendicular to any vector. 

However, the zero vector is orthogonal to every vector. Except to this special case, orthogonal 

and perpendicular are the same. Then we say  ba 0   a    b  (i.e.  ba 0 if  and 

only if a  and b  are perpendicular). 

     Also we note that  200 /ba    and    20 /ba . 

 

2.9. Some applications of a scalar product 

 

2.9.1 Angle between vectors 

 

     We can use the scalar product to find the  angle   between any two nonzero 

vectors a  and b . 

     As it follows from (2.8), 

                                            
ba

bacos



 .                                             (2.16) 

Hence  

                                      arccos


















ba
ba .                                             (2.17) 
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2.9.2 Projecting one vector onto another 

 

     The scalar projection of  any vector a  on any nonzero vector b , denoted by 

aPr b , in accord with (2.8), is defined as the product of the magnitude of a  and 

the cosine of the angle   between a  and b  [see Fig. 2.21]. In symbols, 

                                           aPr b  = cosa .                                               (2.18) 

     Substituting instead of cos  its expression (2.9) we obtain 

                                   aPr b  = a
b

ba
ba

ba 




 .                                     (2.19) 

Likewise, the scalar projection of  b  on  a   is  

                                      bPr a  = b
a

ba
ba

ba 




                                    (2.20) 

[see Fig. 2.21]. 

   Note.  ba is the product of the length of  a  and the scalar projection of  b  on a , i.e. 

bPraba a . Likewise,  aPrbba b . 

 
Fig. 2.21 

aPr b  


 

a  

b  

bPr a
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     The vector projection of  any vector a  on any nonzero vector b , denoted by 

aPr b , is defined as the product of the scalar projection of a  on b  and the unit 

vector in the direction of b . In symbols,  

                aPr b  =   baPr b b
b

ba
b
b

b
ba 
































 2 .                     (2.21) 

Likewise, the vector projection of  b  on  a   is  

                bPr a  =   abPr a a
a

ba
a
a

a
ab 
































 2 .                      (2.22) 

   Note.   If  a   is a force vector, then aPr b  represents the effective force in the direction of  

b  [see Fig. 2.22].  

     We can use vector projections to determine the amount of force required in different 

problems. 

 
Fig. 2.22 

 
 

2.9.3 Work 
 
     If  F  is a constant force, then the work  W  done by F  in moving an object 

from  the initial point of  s  to its terminal point is 

                                   W = cossFsF  ,                                             (2.23) 

where  )sF( ,


 .  

aPr b  

b  

a  



 - 49 - 

   Remark.  From (2.21) it follows that the work is a scalar product of the effective force in 

the direction of  s  with s , i.e.  W = sFPr s  . 

 

2.10. Expressing of the scalar product and its applications 

in terms of rectangular coordinates 

 

     Let’s find directly the scalar product of the vectors  a  = { aaa ZYX ,, } and    

b  = { bbb ZYX ,, }:   

ba   = ( aX i + aY j+ aZ k )  ( bX i + bY j+ bZ k ) = 

        = ba XX  ii ba YX  ji ba ZX  ki ba XY  ij ba YY  jj     

           ba ZY kj  ba XZ  ik ba YZ  jk ba ZZ kk  .          

     According to property 4 of  a scalar product finally we receive  

                              ba  = ba XX + ba YY + ba ZZ .                                       (2.24) 

     Thus we see that is remarkably simple to compute the scalar product of two                                                                                                                                                                                      

vectors when we know their components. 

     The condition of perpendicularity of two nonzero vectors now takes a form 

                                    ba XX + ba YY + ba ZZ  = 0   a    b .                        (2.25)                         

     Substituting (2.24) into (2.16), (2.19) – (2.22), we obtain  

     the cosine of the angle between a  and b  

                            cos
222222
bbbaaa

bababa

ZYXZYX

ZZYYXX




.                     (2.26) 

   Note.   If  1cos , 1cos  and 1cos  are the direction cosines of a  and 2cos , 2cos  

and 2cos  are the direction cosines of b , then, as it follows from (2.12) and (2.26), 

                     212121  coscoscoscoscoscoscos  .                     (2.27) 
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   the scalar projections 

                              aPr b  = 
b

ba   =  
222
bbb

bababa

ZYX

ZZYYXX




,                      (2.28) 

                               bPr a  = 
a

ba   =  
222
aaa

bababa

ZYX

ZZYYXX




.                     (2.29) 

   Note.  With use of (2.24) the correlations (2.11)  may be proved more simply, namely        

xa 



i

iaaPr i aX ,  ya 



j

jaaPr j aY ,  za 



k

kaaPr k aZ , 

where a  = { aaa ZYX ,, }, i = {1, 0, 0}, j = {0, 1, 0}, k  = {0, 0, 1},  kji  1.   

      the vector projections 

                                aPr b  = B ( bX i bY j bZ k ),                                   (2.30) 

                                bPr a =  A ( aX i aY j aZ k ),                                  (2.31) 

        where   B 222
bbb

bababa

ZYX
ZZYYXX




 ,  A 222

aaa

bababa

ZYX
ZZYYXX




 . 

      the work done by the force F = { FX , FY , FZ } on s  = AB  from the point  

         A( Ax , Ay , Az )  to the point  B( Bx , By , Bz )  

                  W = FX ( AB xx  ) + FY ( AB yy  ) + FZ ( AB zz  ).                  (2.32) 

      Example 2.5.  Find the angle between vectors ba 32  and ba 2 , and also 

)ba(Pr ba 322 


, if  kjia 423   and },,{b 321  . 

   Solution.  Let’s find the coordinates of required vectors, using  (2.4):  

},,{)}(,)(),({ba 1710933422322133232  , 

},,{)}(,),({ba 2213242221232  . Then  by formula 

(2.24) we receive )ba()ba( 232   = 4521721019  )()( . Since 
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4701710932 222  )(ba , 32212 222  )(ba , then 

by formula (2.16) we find 
baba

)ba()ba(cos
232
232




 6920

3470
45 ,


 , 

whence 3426920 ,,arccos   [rad.]  (or 74133   ). Now by formula    

( 2.19)  we calculate  )ba(Pr ba 322 


 =  15
3
45

2
232






ba
)ba()ba( . 

      Example 2.6.  Find the effective force  eF  in the direction of the vector 

kjid 453   and a magnitude of this force if  },,{F 1177  . 

   Solution.  Using the formula (2.30) where Fa   and db  , we  obtain the 

effective force  

       kji},,{},,{
)(

)()(Fe 8106453
50

100453
453

4115737
222 




 . 

Hence the magnitude of the effective force is       

                              14142108106 222 ,)(Fe  .                    

      Example 2.7.  Find the work done by a 30 Newton force acting in the 

direction },,{d 221   in moving an object from  A(3, 1, 0) to B(6, 3 , 12).  

   Solution.  The force F  has magnitude 30F  and acts in the direction  d , so   

)kji()kji(
)()(

dF
d
dFF 221022

221

30
222




  . 

The direction of motion is from  A(3, 1, 0) to B(6, 3 , 12), so },,{AB 1243  . 

     Thus [see formula (2.32)], the work done by the force is  

                    W =   350122423110  )()()(ABF [Joules]. 
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3.  Vector and triple scalar products 

 
     In mathematics, the vector product is a binary operation on vectors in a three-dimensional 

space. It differs from the scalar product in that it results in a vector rather than in a scalar. The 

idea of vector product is motivated by the wish to find a vector that is perpendicular to two 

given vectors. The vector product and the scalar product are two ways of multiplying vectors 

which see the wide applications in geometry, physics and engineering.     
 

2.11. Concept of a vector product and its geometric meaning 

 

      Let a  and b  be two noncollinear vectors.  Their vector (or cross, or  outer, 

or external) product is defined as a vector ba  perpendicular to both a  and b  

and whose 

     magnitude is the product of the magnitude of  a , the magnitude of  b , and 

the sine of the smaller angle   (  0 ) between a  and b , i.e. 

                                         sinbaba  ;                                            (2.33) 

     direction is such that the three vectors a , b  and ba (in that order) form a 

right-handed triad. 

     Thus,  

                                           ba = nsinba  ,                                        (2.34) 

where  n  is the unit vector normal to the plane of a  and b , so directed that a , 

b  and  n  form a right-handed triad as in Fig. 2.23. 

The magnitude of a vector product sinbaba   can be interpreted as the 

unsigned area of the parallelogram whose nonparallel sides are a  and b :  

S =  a h  (h = sinb ) [see Fig. 2.23]. 
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Fig. 2.23 

     

     If we observe that 21 cosbaba  , then, using (2.16), we receive 
very useful formula 

                                           222
)ba(baba  .                       (2.35) 

 

2.12. Algebraic properties of the vector product 

 

   1. If the order of  a  and b  is reversed, then in (2.34)  n  must be replaced by 
n . Hence,  

                                        abba  ,                                                    (2.36) 

i.e. the vector product is anticommutative. 

     Since the unit coordinate vectors i , j, k  form right-handed triad, it follows 
that   
                                jik,ikj,kji  ,                            (2.37) 

                                jki,ijk,kij  . 

   2. caba)cb(a   (Distributive Law).                                        (2.38) 

   Notes.  1. Also  dbcbdaca)dc()ba(  .  

ba  

ba

ab




 

  
h 

b  

a  

n  
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                2.  If  caba   and a 0  then  caba 0  and, by the distributive 

                     law above   )cb(a 0 . Now, if  a   is parallel to )cb(  , then even if   

                    a 0  it is possible that )cb(   0   and therefore that cb   . 

                     However, if  both caba   and caba  , then we can conclude that  

                     cb  . This is because if )cb(   0 , then it obviously cannot be both 

                      parallel and perpendicular to another nonzero vector a .  
 
   3. Vector product is compatible with a scalar multiplication so that 

                          )ba()b(ab)a()ba(  ,                        (2.39)        

 where    is a scalar.  

   4. If  two nonzero vectors a  and b  are parallel or ba  , then   = 0 (or   = 

 ) and 0sin , hence ba = 0 . On the contrary, if  ba = 0  and a  and b  

are nonzero vectors, then a  and b  are parallel (we’ll denote this fact by ba ). 
Thus, 
                                                  ba = 0    ba .                                    (2.40) 

       In particular, aa = 0  and then 

                                                0kkjjii  .                                   (2.41) 

      Example 2.8.  Simplify the expression   )ji()jkikji( 2523  . 

   Solution.  By (2.37) – (2.39) and (2.41),   

)ijk(  23 )ji( 25  =  jiiijjijjkik 25410615  

= kjikkij 8156210615  . 

 

2.13. One physical application of a vector product: torque 

 

     The vector product of two vectors is orthogonal to both of them. Its main use 

lies in this fact. 

      So, geometrically, the vector product is useful as a method for constructing a 

vector perpendicular to a plane if we have two vectors in the plane. 



 - 55 - 

     Physically, it appears in the calculation of torque and in the calculation of the 

magnetic force on a moving charge. Here we’ll consider first of them.  

     In physics, torque can informally be thought of as “rotational force” or 

“angular force” which causes a change in rotation motion. This force is defined 

by linear force multiplied by a radius. Thus, the torque is the rotation analogue 

of force. The force applied to a lever, multiplied by its distance from the lever’s 

fulcrum, is the torque. 

     Mathematically, the torque   is defined as the vector product: 

                                                   Fr  ,                                                     (2.42) 

where r  is the radius vector from axis of rotation to point of application of the 

force F  as in Fig. 2.24. 

 
Fig. 2.24 

     Torque has dimensions of force times distance and the SI units of torque are 

stated as “Newton meter” [ mN  ] and its direction is determined by the right-

handed rule. 

     A practical way to calculate the magnitude of the torque is to first determine 

the lever arm and then multiply it times the applied force. The lever arm p is 

defined as the perpendicular distance from the axis of rotation to the line of 

action of the force, i.e. sinrp   [see Fig. 2.24]. Thus,  

p  F  

r  
  

  
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                                sinFrFp  .                                               (2.43) 

     Note that the torque is maximum when the force is perpendicular to the 

vector r , i.e. when 2/  . 

 

2.14. Expressing of the vector product in terms 

of rectangular coordinates 

 

     When  a  = { aaa ZYX ,, } and  b  = { bbb ZYX ,, }, then we have, by the 

distributive law and with the account of  (2.37) and (2.41),  

ba  = ( aX i + aY j+ aZ k )   ( bX i + bY j+ bZ k ) = 

= ba XX  ii ba YX  ji ba ZX  ki ba XY  ij ba YY  jj       

ba ZY  kj ba XZ  ik ba YZ  jk ba ZZ kk   =  

= ba YX k ba ZX j ba XY k ba ZY i ba XZ j ba YZ i =  

= ( ba ZY ba YZ ) i  ( ba ZX ba XZ ) j  ( ba YX ba XY ) k . 

     This result may be written more compactly in the form of determinant:  

                                                           i        j      k  
                                           ba =    aX     aY     aZ   .                                   (2.44) 

                                                          bX     bY     bZ     

   Remark.The determinant in (2.44) is usually write down in the form of first-row Laplace 

expansion (1.13).   

     Thus the area of parallelogram with sides a  and b  can be calculated as  

                                                                 i        j      k  

                                      S =  ba     aX     aY     aZ      =                                   

                                                                bX     bY     bZ     
 
       =  222 )()()( babababababa XYYXXZZXYZZY               (2.45)  
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and the area of the triangle with vertices in the points  A ( Ax , Ay , Az ),              

B ( Bx , By , Bz ) and C ( Сx , Сy , Сz ) is given by formula 

                                                          i               j             k   

           S = 
2
1

 ACAB  
2
1     AB xx     AB yy     AB zz       .              (2.46)  

                                                     AC xx     AC yy     AC zz    
 
     The condition (2.40) of parallelism of two nonzero vectors a  and b , 

according to 5-th property of determinants [see 2.2 of section 1], now takes a 

form 

                                    
b

a
X
X

 
b

a
Y
Y

  
b

a
Z
Z

    a   b .                                       (2.47) 

      Example 2.9.  Find the magnitude of  the torque produced by the force 

kjiF 243  , which applied to the point M ( 2, 3 , 7 ), if the initial point of 

the radius vector is  A( 2, 11 , 1). Find also the lever arm and sin  [Fig. 2.24]. 

   Solution.  The radius vector is },,{},,{AMr 6801711322  . 

Then by (2.42) and (2.45) we obtain 

                             i        j      k  

Fr   =      0       8        6      =   kji 241840    = 222 241840  = 
                             3       4     2                                        
                                   
= 2500  = 50.  The magnitude of  the force is 29243 222 F , 

1068 22 r  and, by (2.43), the lever arm is 289
29

50 ,
F

p 


 and 

the angle which radius vector r  makes with respect to the line of action of the 

force is         
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                                          .,
Fr

sin 9280
2910

50



  

      Example 2.10.  Find the height CD of the triangle ABC if its sides are 

qpAB 43   and qpBC 5 , where p  and q  are unit mutually orthogonal 

vectors. 

   Solution. The area of the triangle, by (2.36), (2.38), (2.41) and (2.46), is   

ABCS = 
2
1

BCAB
2
1 )qp()qp( 543   = 

2
1

 qppp 153  

qqpq  204  = 
2
1 qp19  = 

22
19 sin = 9,5. Since ABCS 2

CDAB   

and  AB = AB  =   )qp()qp(ABAB 4343  22 43  = 5  by 

properties of a scalar product, then  CD = 
5

192

AB

S ABC 3,8. 

 

2.15. Addition: Triple vector product 

 

     Vector multiplication of three vectors a , b  and c  produce product of the 

form  )cb(a   ( or c)ba(   ) which is called triple vector product.  

     Using (2.44), it is possible to show that 

                                )cb(a   = c)ba(b)ca(  .                                    (2.48) 

Similarly,                c)ba(   =  a)cb(b)ca(  .                                   (2.49)        

     Thus, except when b  is perpendicular to both a  and c , 

                                 )cb(a  c)ba(  ,  

i.e. triple vector product is not associative, and the use of parentheses is 

necessary. 

     The following identities are valid: 
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                                               Jacobi’s  identity 

                            0)ba(c)ac(b)cb(a  ,                          (2.50) 

                                             Lagrange’s  identity 

            )dc()ba( )cb()da()db()ca(
dbcb
daca



 .       (2.51) 

 

2.16. Concept of a triple scalar product and its geometric meaning 

 

     Scalar and vector multiplication of three vectors a , b  and c  produce product 

of the form  c)ba(    ( or )cb(a  ) which is called triple scalar (or box, or 

mixed)  product.  

     Let consider that  a , b  and c  are three noncoplanar vectors, which form 

right-handed triad as in Fig. 2.25. 

 
Fig. 2.25 

     Denote by   the smaller angle between c  and ba . Then the triple scalar 

product c)ba(   is by definitions (2.15) and (2.34)  

                     c)ba(   = n)ba(sinba ,


c  = cosc)ba(sinba ,


. 

ba  

cb  



  
b  

a  

n  

c

1h

2h
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     Since )ba(sinba ,


 is the area 1S  of  parallelogram formed by the vectors 

a  and b  and 1hcPrcosc ba 


 , where 20 /  , is corresponding 

height of  parallelepiped formed by a , b  and c , then c)ba(  = 11 hS   is 

numerically equal to volume V of this parallelepiped.  

     Similarly, if we denote by   the smaller angle between a  and cb  

 [see Fig. 2.25], then we’ll receive: 

                       )cb(a   = )cb(sincbcosa ,


 c  = 22 hS  ,  

where 2S  = )cb(sincb ,


 is the area of parallelogram formed by the vectors 

b  and c  and 2h  =  cosa  = aPr cb   (0 2/  ) is corresponding height 

of the same parallelepiped.  

     Thus, c)ba(   = )cb(a  , i.e. in a scalar triple product the dot and cross, 

which denote a scalar and vector products respectively, can be interchanged 

without affecting the result. Since the parenthesis in a triple scalar product are 

not necessary and usually omitted, the more so, as writing c)ba(   is without 

meaning. Therefore triple scalar product can be written in the simplify form 

cba . 

 

2.17. Geometric properties of a triple scalar product 

 

     As it easy to see, if the vectors a , b  and c  formed left-handed triad as in  

Fig. 2.26, then  2/ . Hence, in this case cPrh ba1 , and therefore 

V c)ba(  .  

     Thus,  
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     the triple scalar product is in absolute value numerically equal to the volume 

of a parallelepiped formed by a , b  and c :  

                                                  V = cba ;                                                   (2.52) 

     if the vectors a , b  and c  formed right-handed triad, then 0cba , and 

conversely;  

     if the vectors a , b  and c  formed left-handed triad, then 0cba , and 

conversely. 

   Note.  The volume of the pyramid pyrV formed by the vectors a , b  and c  numerically is 

equal to V/ 6. 

 
Fig. 2.26 

     It is obvious that if the vectors a , b  and c  are noncoplanar then 

0cba (and conversely), and if the vectors a , b  and c  are coplanar then V = 0, 

i.e. 0cba , and conversely, i.e. 

                                (a ,b ,c  are coplanar)  0 cba .                             (2.53) 

     Remark.  In particular, the triple scalar product is equal to zero if only one factor is zero 

vector or if only two factors are parallel (or equal each other) vectors. 

 

ba  


 

b

a  

n  

1h
 

c  
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2.18. Expressing of the triple scalar product in terms 

of rectangular coordinates 

 

     Let  a  = { aaa ZYX ,, }, b  = { bbb ZYX ,, } and  c  = { ccc ZYX ,, }. Then, by 

(2.44),                       

                                                           i        j      k  

 )cb(a   =  ( aX i + aY j+ aZ k )   bX     bY     bZ    = ( aX i + aY j+ aZ k )   
                                                          cX     cY     cZ     

 [( cb ZY cb YZ ) i  ( cb ZX cb XZ ) j  ( cb YX cb XY ) k ] =  

=  aX ( cb ZY cb YZ )  aY ( cb ZX cb XZ ) + aZ ( cb YX cb XY ).  

     This result may be written more compactly in the form of  a determinant:  

                                               cba = 

ccc

bbb

aaa

ZYX
ZYX
ZYX

.                                  (2.54) 

     

2.19. Algebraic properties of a triple scalar product 

 

     All properties of  the triple scalar product, including its geometrical 

properties, follow from the properties of the determinants [see 2.2 of section 1]. 

For example,  

cba = 

ccc

bbb

aaa

ZYX
ZYX
ZYX

 = 

ccc

aaa

bbb

ZYX
ZYX
ZYX

  = cab = 

aaa

ccc

bbb

ZYX
ZYX
ZYX

 = acb . 

     Similarly, we can prove that  cba =  bac =  bca  =  abc . Thus,  

                                          cba =  acb =  bac                                             (2.55) 

and                         cba =  cab =  bca  =  abc ,                             (2.56) 
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i.e. the triple scalar product does not change at cyclic (circular) rearrangement of 

the vectors, but it changes the sign at the rearrangement of any two neighboring 

vectors. 

     The following laws are valid: 

Associative Law for scalar factor 

)cba()c()ba(c)]b(a[c]b)a[(   ,                         (2.57) 

Distributive Law 

dbacba)dc()ba(  ,                                                                       (2.58) 

dcbdсa)dc()ba(  ,                                                                       (2.59) 

cbacba)cba()(   .                                                                  (2.60) 

      Example 2.11.  Simplify the expression )]ac()cb[()ba(  . 

   Solution.  Using the properties of  the vector product and the triple scalar 

product and, in particular,  taking into account the remark to (2.53), we obtain 

 )acabcb()ba()acccabcb()ba(  

= cbaacbcba 2 . 

 

2.20. Some applications of a triple scalar product 

 

     Let  a  = { aaa ZYX ,, }, b  = { bbb ZYX ,, } and  c  = { ccc ZYX ,, }. Then, as 

follows from the geometric properties of a triple scalar product and from (2.54), 

the volume of a parallelepiped can be calculated by the formula  

                                               V =     

ccc

bbb

aaa

ZYX
ZYX
ZYX

  ,                                 (2.61) 

and also   (a ,b ,c  are noncoplanar)  0

ccc

bbb

aaa

ZYX
ZYX
ZYX

, in particular,                          
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(a ,b ,c  formed right-handed system)  0

ccc

bbb

aaa

ZYX
ZYX
ZYX

,                          (2.62) 

  (a ,b ,c  formed left-handed system)  0

ccc

bbb

aaa

ZYX
ZYX
ZYX

.                          (2.63)   

     The condition of coplanarity of three vectors (2.53) now takes a form                           

                      (a ,b ,c  are coplanar)  0

ccc

bbb

aaa

ZYX
ZYX
ZYX

.                          (2.64) 

     The volume of the pyramid with vertices in the points A ( Ax , Ay , Az ),         

B ( Bx , By , Bz ), C ( Сx , Сy , Сz ) and D ( Dx , Dy , Dz ) is given by the formula 

              pyrV = 
6
1

6
1

ADACAB    

ADADAD

ACACAC

ABABAB

zzyyxx
zzyyxx
zzyyxx





   =                             

                     = 
6
1   

1
1
1
1

DDD

CCC

BBB

AAA

zyx
zyx
zyx
zyx

   .                                                       (2.65) 

     Note.  If the points A, B, C and D all lie in the same plane, then   

                                0

1
1
1
1



DDD

CCC

BBB

AAA

zyx
zyx
zyx
zyx

, and conversely.  

           The following identities are valid: 

   1.  )dcb(a)dca(b
ba

dcbdca)dc()ba(  .                           (2.66) 
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   2.  
fcecdc
fbebdb
faeada

)fed()cba(




 .                                         (2.67) 

     In particular, with taking into account the scalar product’s  commutativity, 

we obtain 

2

2

2

2

ccbca

cbbba

cabaa

)cba()cba()cba(







 = 

=    222 2 )cb(a)ca()cb()ba(cba  22
)ca(b   

22
)ba(c  .   

       The last ratio can be applied to the calculation of the volume of the 

parallelepiped with the edges a, b, c, which come out from the same vertex, and 

planar angles between them   ( ba
, ),   ( cb

, ),   ( ca
, ) as it shown in  

Fig. 2.27. 

 
Fig. 2.27 

     Then 

           V =   22221 coscoscoscoscoscos abc .    (2.68) 

  

  
b  

  

c  

a  
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      Example 2.12.  Show that the vectors kjia 934  ,  kib  ,  

kjic 345   are noncoplanar and determine the orientation of respective 

system, formed by these vectors. 

   Solution.  By (2.54),   cba = 
345
101
934





 =  461693615  . 

Since 0cba  then the vectors a , b  and c  are noncoplanar. Since also 0cba  

then, according to (2.62),  the vectors a , b  and c  formed right-handed system.  

      Example 2.13.  Find the height DE of the pyramid with vertices in the points 

A (2, 3, 1),  B (4, 1, 2 ), C (6, 3, 7) and D ( 5 , 4 , 8). 

   Solution.  By (2.65), 

pyrV = 
6
1

6
1

ADACAB 




777
604
322

3
15484568484

6
1

 . 

Also pyrV =  ABCS3
1 DE, from which  DE =  

ABC

pyr

S
V



3
. For the calculating the 

area of a triangle ABC we’ll use the formula (2.35):  ACABS ABC  2
1  = 

 222

2
1 )ACAB(ACAB  21883616944

2
1 )()()(  

141005217
2
1

 . Thus,  DE =  11
14

154
 . 

      Example 2.14.  Find the volume of  the parallelepiped with the edges  

a = 32 , b = 5, c = 6, which come out from the same vertex, and planar angles 

between them   ( ba
, ) = 

3
2 ,   ( cb

, ) = 
4
 ,   ( ca

, ) = 
4
 . 

   Solution.  By (2.68), 

 90
2
3360

2
1

4
1

2
1

2
1

2
1

2
1216532  )(V . 
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